

Comprehensive Evaluation of Mitral Valve-in-Valve and Valve-in-Ring

Matheus Simonato, MD Danny Dvir, MD

On behalf of Valve-in-Valve International Data (VIVID) Registry Investigators

Potential conflicts of interest

Speaker's name: Matheus Simonato

✓ I do not have any potential conflict of interest to declare

Matheus Simonato, MD

Matheus Simonato, MD

Why this study?

 There is limited data on the clinical significance of valve hemodynamics after transcatheter mitral valve-in-valve and valve-in-ring procedures.

 Our objective was to describe predictors for residual mitral stenosis and residual mitral regurgitation after these procedures and to determine whether there is a possible influence on meaningful long-term clinical outcomes.

Matheus Simonato, MD

Retrospective multicenter data collection.

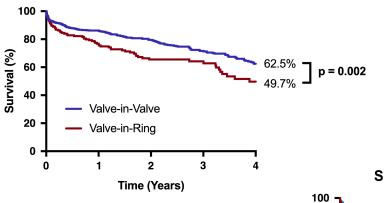
- Outcome definitions from the Mitral Valve Academic Research Consortium.
- Residual stenosis was defined as mean gradient ≥ 10 mmHg.
- Residual mitral regurgitation was defined as ≥ moderate MR.

Matheus Simonato, MD

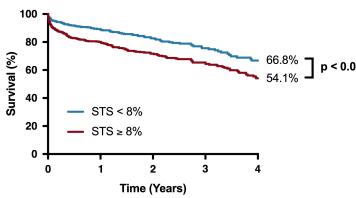
Baseline characteristics (n = 1,079)

	Mitral valve-in-ring (n = 222)	Mitral valve-in-valve (n = 857)
Male	50.9%	38.2%
Height (cm)	$\textbf{168.0} \pm \textbf{9.3}$	$\textbf{164.9} \pm \textbf{9.8}$
Weight (kg)	$\textbf{73.8} \pm \textbf{17.2}$	69.1 ± 16.4
Age (years)	$\textbf{71.2} \pm \textbf{12.8}$	$\textbf{74.1} \pm \textbf{12.4}$
Label size (mm)	28.9 ± 2.5	$\textbf{28.2} \pm \textbf{2.0}$
True ID (mm)	28.2 ± 2.8	$\textbf{24.7} \pm \textbf{2.1}$
New York Heart Association class		
I	0.0%	0.6%
II	5.1%	10.0%
III	65.6%	57.7%
IV	29.3%	31.8%
Mechanism of failure		
Regurgitation, n (%)	35.6%	10.2%
Stenosis, n (%)	15.3%	30.7%
Mixed, n (%)	49.1%	59.1%
STS PROM (%)	7.4 [4.6 – 13]	9 [5.6 – 14.3]

Matheus Simonato, MD

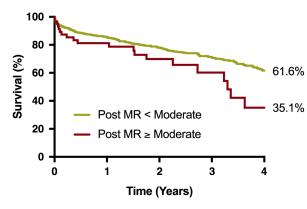


30-day mortality:

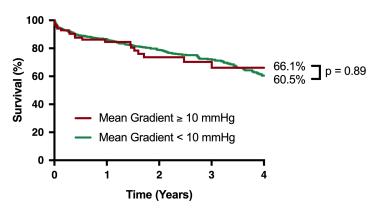

ViR 8.6% vs. ViV 6.5%

p = 0.29

Survival - STS Score

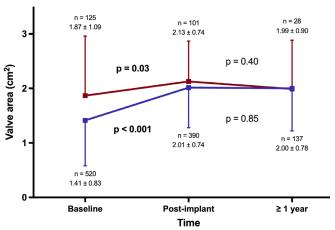


Matheus Simonato, MD

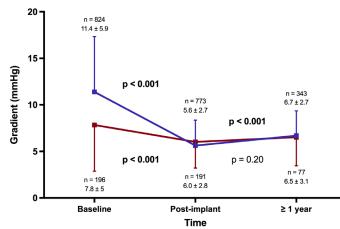

Survival - Post-Procedural MR

81.4% of cases SAPIEN 3/SAPIEN XT

p = 0.02



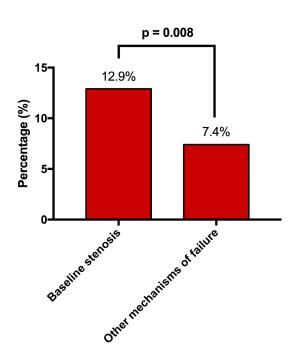
Matheus Simonato, MD

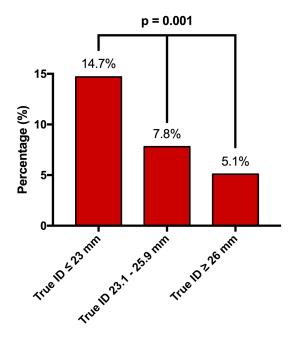

Echocardiographic Follow-up - Mitral Valve Area

Valve-in-ValveValve-in-Ring

Residual mitral stenosis (≥ 10 mmHg): ViR 12.0% vs. ViV 8.2% p=0.09

Echocardiographic Follow-up - Mean Gradient




Matheus Simonato, MD

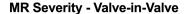
Elevated Mean Gradients - Mechanism of Failure

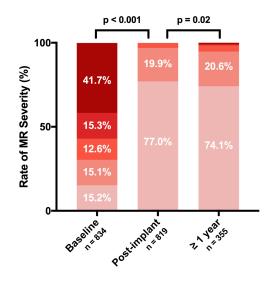
Elevated Mean Gradients - True ID

Mean Gradient ≥ 10 mmHg

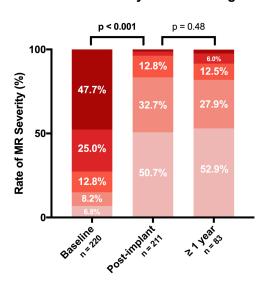
Matheus Simonato, MD

Residual mitral regurgitation (≥ moderate): ViR 16.6% vs. ViV 3.1% p<0.001


Severe

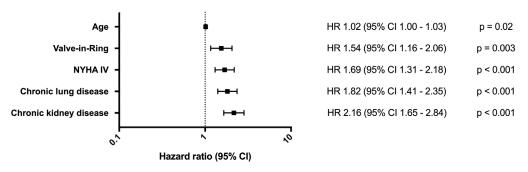

Moderate

None/Trace

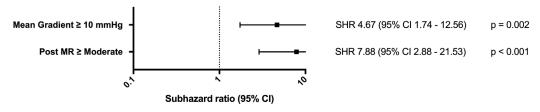

Mild

Moderately Severe

MR Severity - Valve-in-Ring



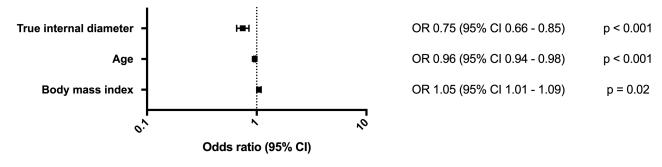
Matheus Simonato, MD

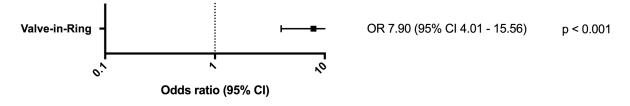


Four-year repeat MVR: ViR 5.9% vs. ViV 1.9% p<0.001 LVOT obstruction: ViR 5.9% vs. ViV 1.8% p=0.001

Independent Correlates of Mortality

Independent Correlates of Repeat Mitral Valve Replacement




Matheus Simonato, MD

Independent Correlates of Significant Residual Mitral Stenosis

Independent Correlates of Significant Residual Mitral Regurgitation

Matheus Simonato, MD

The essentials to remember

- Mitral ViR patients had higher mortality and required more redo MVR at four-year follow-up.
- Both residual mitral regurgitation and residual mitral stenosis are relatively common after ViV and ViR.
- Residual mitral regurgitation was associated with higher mortality and need for repeat MVR.
- Residual mitral stenosis was not predictive of patient mortality but was associated with repeat MVR.
- Operators of ViV and ViR procedures should aim for achieving optimal hemodynamics in these procedures.

PCR

PCRonline.com