

#### Effect of Ferric Carboxymaltose on Exercise Capacity in Patients With Iron Deficiency and Chronic Heart Failure (EFFECT-HF)

Dirk J. van Veldhuisen, Piotr Ponikowski, Marco Metra, Michael Böhm, Peter van der Meer, Artem Doletsky, Adriaan A. Voors, Iain MacDougall, Bernard Roubert, Stefan D. Anker, Alain Cohen Solal for the EFFECT-HF Investigators.

Sponsor: Vifor Pharma Ltd.

Dept. of Cardiology, University Medical Center Groningen

Groningen, The Netherlands



- Iron deficiency is frequent co-morbidity in patients with stable chronic HF and in patients admitted to hospital with acute HF<sup>1,2</sup>
- HF complicated with iron deficiency is associated with impaired functional capacity, poor quality of life and increased mortality<sup>1,3,4</sup>
- Deleterious consequences of iron deficiency in HF irrespective of presence of anaemia<sup>1,3,4</sup>
- Iron deficiency: a therapeutic target in HF<sup>5,6</sup>

Klip IT, et al. *Am Heart J* 2013;165:575-82.
Jankowska EA, et al. *Eur Heart J* 2014;35:2468-76.
Jankowska EA, et al. *J Cardiac Fail* 2011;17:899-906.
Enjuanes C, et al. *Int J Cardiol* 2014;174:268-75.
Anker SD, et al. *N Engl J Med* 2009;361:2436-48.
Ponikowski P, et al. *Eur Heart J* 2015;36:657-68.

### Dual effects of iron deficiency in HF: Defective oxygen delivery and utilization





# Benefits of Ferric CarboxyMaltose (FCM, iv iron) in CHF: FAIR-HF and CONFIRM-HF studies





CHF, chronic heart failure; FCM, ferric carboxymaltose; NYHA, New York Heart Association; 6MWT, 6 minute walk test

Anker SD, et al. *N Engl J Med* 2009;361:2436-48.
Ponikowski P, et al. *Eur Heart J* 2015;36:657-68.



- Exercise intolerance (dyspnea and fatigue) is a key symptom of HF<sup>1</sup>
- Cardiopulmonary exercise testing defines maximum exercise capacity through measurement of peak oxygen uptake (peak VO<sub>2</sub>)<sup>1</sup>
- Peak VO<sub>2</sub> is a powerful predictor of prognosis in HF, is objective, reproducible, and used to evaluate cardiac transplantation and LVAD<sup>2</sup>
- Even a modest increase in peak VO<sub>2</sub> has been associated with a more favorable outcome in HF patients<sup>2</sup>

# **EFFECT-HF: Study design**



- Design: Multicenter, randomized (1:1), open label, assessor/endpoint-blinded, standard of care-controlled
- Main inclusion criteria
  - ✓ NYHA class II/III
  - ✓ LVEF ≤45%
  - ✓ Peak VO<sub>2</sub> 10-20 mL/kg/min (reproducible)
  - ✓ BNP >100 pg/mL and/or NT-proBNP >400 pg/mL
  - $\checkmark\,$  Iron deficiency: serum ferritin <100 µg/L OR 100–300 µg/L if TSAT <20%  $\,$
  - ✓ Hb <15 g/dL</p>



ClinicalTrials.gov identifier: NCT01394562

# Primary and key secondary endpoints



#### Primary endpoint

- Change in weight-adjusted peak VO<sub>2</sub> from baseline to Week 24
- Key secondary endpoints
  - Change in peak  $VO_2$  (mL/kg/min) from baseline to Week 12
  - Change in other exercise parameters (VE-VCO<sub>2</sub> slope, work rate) at Weeks 12 and 24
  - Change in biomarkers for iron deficiency, renal function, cardiac function (including BNP and NT-proBNP), NYHA functional class, PGA and QoL
  - Safety over the treatment period



- The primary efficacy analysis of peak VO<sub>2</sub> at 24 weeks was an ITT analysis in which missing peak VO<sub>2</sub> values were imputed using last observation carried forward (LOCF).
- This analysis was performed on data for the full analysis set (FAS), which consisted of all randomized patients who received ≥1 dose of study treatment and for whom ≥1 post-baseline assessment was available
- In addition, a per-protocol analysis was also performed. The per-protocol set (PPS) was defined as all subjects in the FAS who had no major protocol deviations
- The safety analysis was performed on the safety population, which consisted of all randomized subjects who received ≥1 dose of study medication

### Patient disposition





| Country<br>( <i>N</i> =9) | No. of<br>study sites<br>( <i>N</i> =41) | Patients<br>randomized<br>( <i>N</i> =174) |
|---------------------------|------------------------------------------|--------------------------------------------|
| Australia                 | 3 sites                                  | <i>n</i> =4                                |
| Belgium                   | 1 site                                   | <i>n</i> =8                                |
| France                    | 2 sites                                  | <i>n</i> =10                               |
| Germany                   | 3 sites                                  | <i>n</i> =24                               |
| Italy                     | 4 sites                                  | <i>n</i> =18                               |
| Netherlands               | 2 sites                                  | <i>n</i> =22                               |
| Poland                    | 1 site                                   | <i>n</i> =36                               |
| Russia                    | 10 sites                                 | <i>n</i> =42                               |
| Spain                     | 2 sites                                  | <i>n</i> =10                               |

# Baseline characteristics – (1/2)



|                                 | FCM (N=86)   | SoC (N=86)   |
|---------------------------------|--------------|--------------|
| Age years*                      | 62.7 (11.56) | 64.4 (11.42) |
| Female n (%)                    | 26 (30.2)    | 17 (19.8)    |
| NYHA class                      |              |              |
| II n (%)                        | 61 (70.9)    | 54 (62.8)    |
| III n (%)                       | 25 (29.1)    | 32 (37.2)    |
| LVEF %*                         | 32.5 (8.7)   | 31.0 (7.5)   |
| Ischemic etiology n (%)         | 60 (69.8)    | 64 (74.4)    |
| Peak VO <sub>2</sub> ml/min/kg* | 13.55 (2.28) | 13.36 (2.42) |
| Medical history                 |              |              |
| Hypertension n (%)              | 62 (72.1)    | 56 (65.1)    |
| Atrial fibrillation n (%)       | 35 (40.7)    | 41 (47.7)    |
| Diabetes mellitus n (%)         | 26 (30.2)    | 32 (37.2)    |
| Myocardial infarction n (%)     | 58 (67.4)    | 55 (64.0)    |

\*mean (standard deviation)

FCM, ferric carboxymaltose; SoC, standard of care

# Baseline characteristics – (2/2)



|                                           | FCM (N=86)    | SoC (N=86)    |
|-------------------------------------------|---------------|---------------|
| Concomitant medications                   |               |               |
| Diuretics n (%)                           | 80 (93.0)     | 82 (95.3)     |
| ACEi/ARB n (%)                            | 81 (94.2)     | 77 (89.5)     |
| Beta-blocker n (%)                        | 84 (97.7)     | 84 (97.7)     |
| Aldosterone antagonists (MRA) n (%)       | 58 (67.4)     | 62 (72.1)     |
| Laboratory parameters                     |               |               |
| BNP pg/mL*                                | 838 (762)     | 796 (819)     |
| NT-proBNP pg/mL*                          | 2631 (3141)   | 2415 (2592)   |
| Estimated GFR mL/min/1.73m <sup>2</sup> * | 51.5 (13.3)   | 50.8 (12.3)   |
| Hb <i>g/dL</i> *                          | 12.93 (1.30)  | 12.99 (1.46)  |
| Ferritin ng/mL*                           | 62.06 (60.64) | 64.72 (51.44) |
| <100 ng/mL n (%)                          | 74 (86.0)     | 71 (82.6)     |
| TSAT % *                                  | 19.65 (13.71) | 20.07 (9.63)  |
| <20% n (%)                                | 53 (61.6)     | 46 (53.5)     |

\*mean (standard deviation);

FCM, ferric carboxymaltose; SoC, standard of care

### Results: Iron-related parameters Change from baseline to Week 24



|                 | FC<br>(N=        | CM<br>:86)         | Sc<br>(N=        | DC<br>:86)           | Contrast:<br>FCM – SoC** |                                      |
|-----------------|------------------|--------------------|------------------|----------------------|--------------------------|--------------------------------------|
| Parameter       | Baseline         | Week 24            | Baseline         | Week 24              | Change from baseline     | <i>P</i> -value<br>between<br>groups |
| Ferritin ng/mL* | 62.06<br>(60.64) | 283.17<br>(150.28) | 64.72<br>(51.44) | 92.31 ***<br>(65.43) | 188.7<br>(17.27)         | 0.0001                               |
| TSAT %*         | 19.65<br>(13.71) | 26.54<br>(8.25)    | 20.07<br>(9.63)  | 21.90<br>(10.17)     | 4.7<br>(1.35)            | 0.0007                               |
| Hb g/dL*        | 12.93<br>(1.30)  | 13.90<br>(1.30)    | 12.99<br>(1.46)  | 13.19<br>(1.47)      | 0.74<br>(0.17)           | <0.0001                              |

\*mean (standard deviation)

\*\*least squares means (standard error)

\* \* \* 29 pts in SoC received oral iron

FCM, ferric carboxymaltose; SoC, standard of care

### Primary endpoint analysis: Change in peak VO<sub>2</sub> from baseline to Week 24



Full analysis set (N=172)



\*population consisted of all subjects who, in addition to the full analysis set criteria, had no major protocol violations.

FCM, ferric carboxymaltose; LOCF, last observation carried forward; LSM, least-square means

No significant interaction when adjusted to baseline Hb <12 g/dL or > 12 g/dL

Per-protocol set (N=146)\*

# Secondary endpoints: VE/VCO<sub>2</sub> slope and peak work rate





FCM, ferric carboxymaltose; LOCF, last observation carried forward; LSM, least-square means;

VE/VCO<sub>2</sub>, minute ventilation/carbon dioxide production

#### Secondary endpoints: Changes in PGA and NYHA class



#### New York Heart Association Functional (NYHA) class

#### Self-reported Patient Global Assessment (PGA) score



# Hospitalizations and deaths (safety population)



| Event description                         | FCM (N=88)<br>n (%) E | SoC (N=85)<br>n (%) E | Total (N=173)<br>n (%) E |
|-------------------------------------------|-----------------------|-----------------------|--------------------------|
| Death                                     | 0                     | 4 (4.7) 4             | 4 (2.3) 4                |
| Any hospitalization                       | 27 (30.7) 37          | 13 (15.3) 21          | 40 (23.1) 58             |
| Reason for hospitalization                |                       |                       |                          |
| Due to worsening of CHF                   | 11 (12.5) 13          | 6 (7.1) 13            | 17 (9.8) 26              |
| Due to other cardiovascular-related event | 12 (13.6) 13          | 3 (3.5) 3             | 15 (8.7) 16              |
| Due to a non-cardiovascular event         | 9 (10.2) 11           | 4 (4.7) 4             | 13 (7.5) 15              |
| Due to a serious drug reaction            | 0                     | 0                     | 0                        |
| Unknown (insufficient data to adjudicate) | 0                     | 1 (1.2) 1             | 1 (0.6) 1                |

CHF, chronic heart failure; E, events; FCM, ferric carboxymaltose; SoC, standard of care; n, number of patients. There was an additional death in the SoC arm; the subject died after completion of the study

# Summary of treatment-emergent adverse events (safety population)



| Parameter                                                 | FCM (N=88)<br>n (%) E | SoC (N=85)<br>n (%) E | Total (N=173)<br>n (%) E |
|-----------------------------------------------------------|-----------------------|-----------------------|--------------------------|
| Any AE                                                    | 53 (60.2) 158         | 41 (48.2) 117         | 94 (54.3) 275            |
| Any severe AE                                             | 13 (14.8) 19          | 8 (9.4) 15            | 21 (12.1) 34             |
| Any serious AE                                            | 28 (31.8) 45          | 16 (18.8) 28          | 44 (25.4) 73             |
| Any AE leading to study drug withdrawal                   | 2 (2.3) 2             | 5 (5.9) 5             | 7 (4.0) 7                |
| Any AE with outcome of death                              | 0 0                   | 5 (5.9) 5             | 5 (2.9) 5                |
| Any treatment-related AE                                  | 8 (9.1) 10            | 0 0                   | 8 (4.6) 10               |
| Any severe treatment-related AE                           | 3 (3.4) 3             | 0 0                   | 3 (1.7) 3                |
| Any serious treatment-related AE                          | 0 0                   | 0 0                   | 0 0                      |
| Any treatment-related AE leading to study drug withdrawal | 0 0                   | 0 0                   | 0 0                      |
| Any treatment-related AE with outcome of death            | 0 0                   | 0 0                   | 0 0                      |

Mean treatment dose of FCM=1204 mg (96% of the patients received a maximum of 2 injections). No serious hypersensitivity reactions and no hypophosphatemia were observed. Any treatment-related AEs are as expected for FCM. All severe treatment-related AEs were overdose without AEs reported

AE, adverse event; E, events; FCM, ferric carboxymaltose; SoC, standard of care





- In symptomatic patients with HF and iron deficiency, treatment with IV ferric carboxymaltose (FCM) over a 24-week period resulted in:
  - A significantly beneficial effect on peak VO<sub>2</sub> compared with the SoC arm (irrespective of baseline anemia)
- These findings confirm and extend the results of previous studies (FAIR-HF<sup>1</sup> and CONFIRM-HF<sup>2</sup>) that treatment with ferric carboxymaltose improves exercise capacity and symptoms in patients with HF and iron deficiency



We dedicate this work to our 2 wonderful and inspiring colleagues, and fellow Steering Committee members who died during the study:

Viviane Conraads (Antwerp, Belgium), and

Henry Krum (Melbourne, Australia).