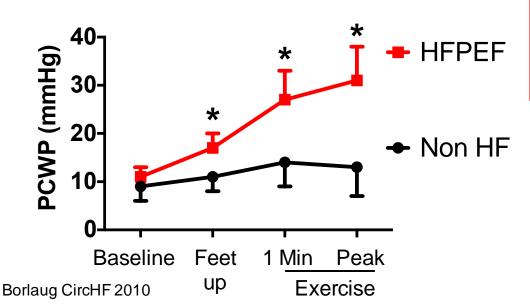


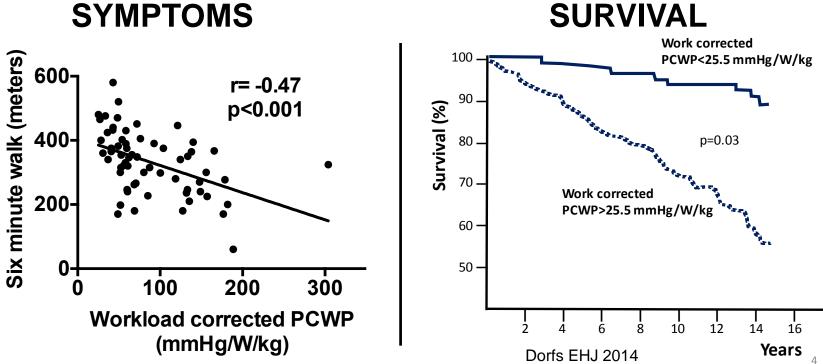
Transcatheter Intracardiac Shunt Device Provides Sustained Clinical Benefit at One Year in Heart Failure with Preserved or Mildly Reduced Ejection Fraction: The <u>REDUCE LAP Heart Failure Trial</u>

David M Kaye MD, PhD on behalf of the REDUCE LAP HF Investigators



DK is an unpaid member of the Corvia Medical, Inc. Scientific Advisory Group

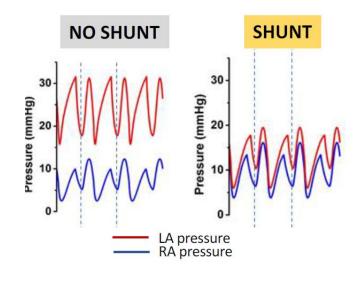
Introduction

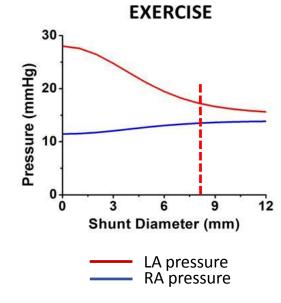


- Heart failure with preserved ejection fraction (HFPEF) has a complex pathophysiology and remains a therapeutic challenge.
- Elevated left atrial pressure, especially during exercise, is a near-universal finding in patients with HFPEF.

Increased LV passive stiffness Reduced active LV relaxation Reduced LA compliance

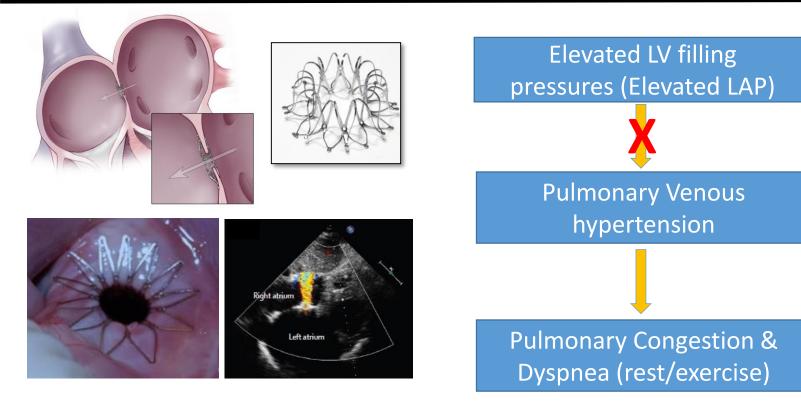
REDUCE LAP-HF Unpublished data




- The magnitude of the exercise mediated rise in PCWP in HFPEF is related to both symptoms and outcome.
- Implications of Elevated LA Pressure in HFPEF

Left Atrial Decompression: IASD Rationale

 Computer simulation demonstrated that an 8mm interatrial shunt device (IASD[®]) would provide acute LA decompression during exercise



Kaye et al JCardFail 2014

InterAtrial Shunt Device - Mode of Action

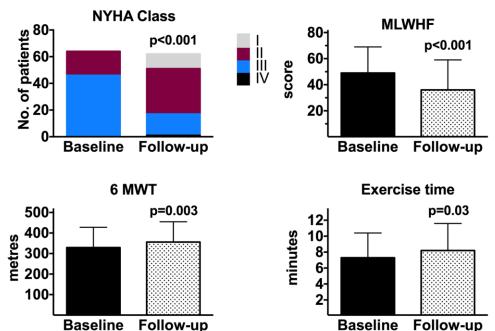
Transcatheter interatrial shunt device

REDUCE LAP-HF Trial

Inclusion Criteria (n=64):

Open label

LVEF \geq 40%,


NYHA class II-IV

Elevated PCWP

 \geq 15 mmHg (rest) or

≥ 25 (supine bicycle exercise)

6 month outcomes

& reduced exercise PCWP

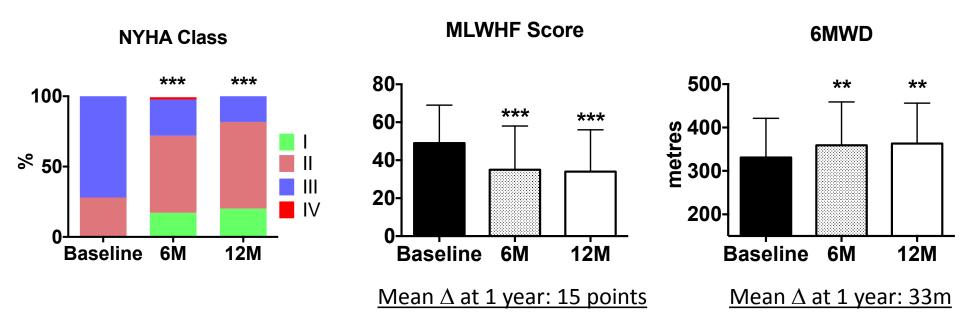
Objective & Methods

- To assess **device safety** (major adverse cardiac, cerebrovascular and systemic embolic events -MACCE), and **device performance** one year post implant.
 - device performance: shunting (echocardiography)
- To evaluate **persistence of clinical benefit**:
 - > clinical efficacy: NYHA class, quality of life (MLWHFQ), 6MW distance
 - cardiac structure and function (echocardiography)
 - rest and exercise hemodynamics (optional sub-study, n=18)
 - > oximetry to assess Qp:Qs (n=13)
- Study monitored by independent CEC and DSMB

Baseline Characteristics (n=64)

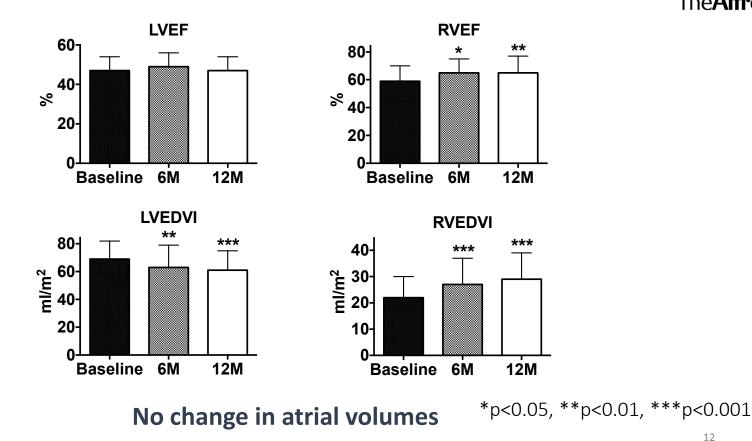
Age (Y)	69±8
Gender (% Female/Male)	66 / 34
LVEF (%)	47±7
NYHA Class (n, II/III/IV)	18/46/0
Minnesota Living with HF Score	49 ± 20
BMI kg/m ²	33 ± 6
Permanent AF (%)	36
NT-Pro BNP (median, IQR pg./ml)	377 (222-925)
Hypertension (%)	81
Diabetes (%)	33
Coronary artery disease (%)	36
Diuretics at baseline (%)	91
Resting CVP (mm Hg)	9 ± 4
Resting PCWP (mm Hg)	17 ± 5

Safety (MACCE) and Device Performance


MACCE event	Six months %	One year %
Death	0	4.7 (3/64)
Stroke	0	1.5 (1/64)* (pt died)
MI	0	0
Systemic embolic event	0	0
Implant removal	0	0

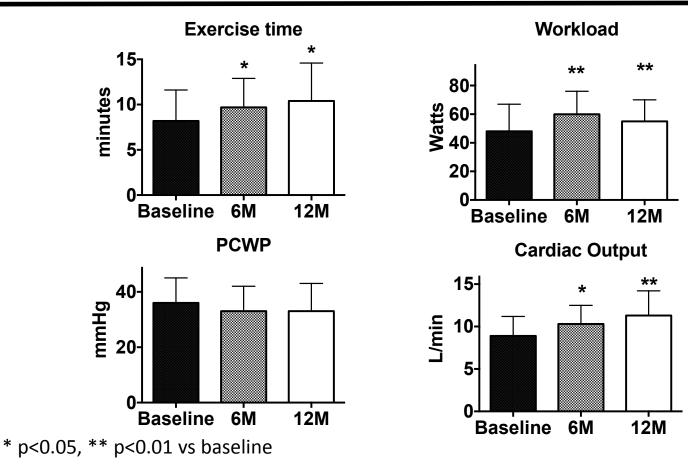
Effectiveness	Six months %	One year %
L \rightarrow R Shunt flow (Echo)	100 (49/49)	100 (48/48)
R→ L Shunt flow (Echo)	0	0
Qp:Qs	1.27 ± 0.24	1.28 ± 0.25

Device patency confirmed in 54 subjects (by echo or oximetry)


Patients with data at all 3 time points.

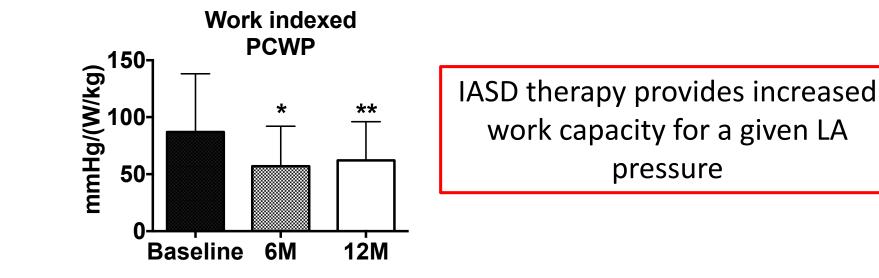
p<0.01, *p<0.001 vs baseline

Echocardiographic Results


	Baseline	Six months	One year
RA pressure	8 ± 3	11 ± 6	10 ± 4
PA _{mean} pressure	25 ± 8	23 ± 7	26 ± 8
Wedge pressure	19 ± 6	16 ± 8	17 ± 6
Cardiac output	5.2 ± 1.3	6.3 ± 1.4**	6.7 ± 1.8**

Patients with data at all 3 time points.

** p<0.01 vs baseline


Exercise Hemodynamic Results-1

Exercise Hemodynamic Results-2

* p<0.05, ** p<0.01 vs baseline

- The**Alfred**
- Implantation of an interatrial shunt device appears to be safe with an acceptable MACCE rate through one year of follow-up.
- Interatrial shunt device patency was maintained through one year
- The clinical and hemodynamic benefit observed 6 months after implant was sustained through one year, with no evidence of adverse sequelae
 - Meaningful improvements in NHYA class, exercise capacity and QOL
 - Clinically meaningful reduction in normalized PCWP
- Randomised trials are required and ongoing to determine the value of this novel strategy for the management of HFPEF.