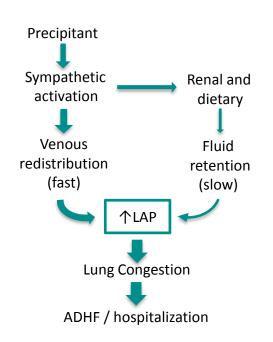
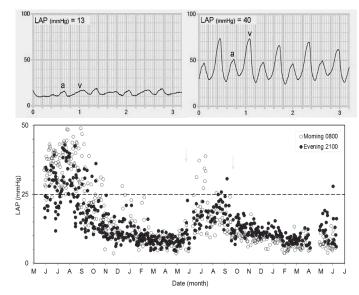


Interatrial Shunting for Treating Heart Failure: Early and Late Results of the First-in-Human Experience With the V-Wave Interatrial Shunt System

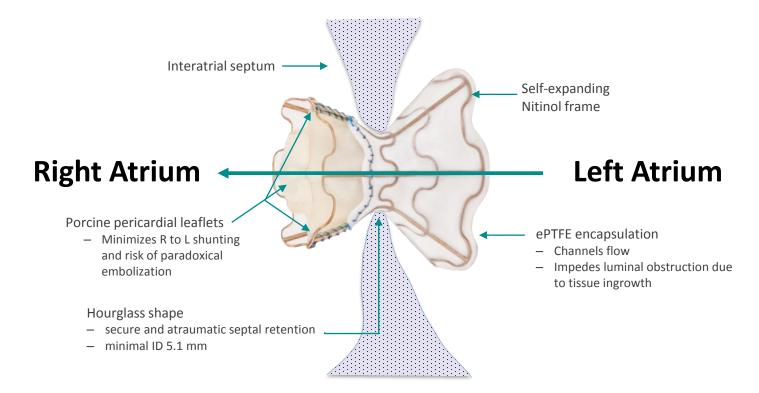
Josep Rodés-Cabau, MD, FACC Quebec Heart & Lung Institute, Laval University


on behalf of V-Wave's FIM/SAP Investigators



• Consultant for and institutional research grants from V-Wave Ltd.

Elevated LAP: The Cause of Lung Congestion in ADHF



- · LAP often highly variable over the course of a day
- Increase of LAP precedes clinical events, averaging
 >25 mmHg for several days before admission or death

HOMEOSTASIS: Ritzema. Circulation 2010

The V-Wave Shunt

 First-in-human prospective multicenter open-label experience to assess the feasibility, safety and exploratory efficacy of interatrial shunting with the V-Wave system for patients with heart failure (reduced and preserved left ventricular ejection fraction)

Outcomes

- Primary
 - Safety: device/procedure-related major adverse cardiovascular and neurological events (MACNE), defined as death, stroke, device embolization, pericardial effusion requiring intervention, re-intervention or surgery at 3- and 12-month follow-up
 - Procedural success: successful device implantation with no periprocedural death
- Secondary
 - Safety: all-cause MACNE, all serious adverse events (SAEs) and serious adverse device effects (SADEs)
 - *Exploratory efficacy*: changes in NYHA Class, quality of life, and 6MWT distance at 3- and 12-month follow-up

Main Inclusion/Exclusion Criteria

Inclusion Criteria

- Chronic HF of ischemic or non-ischemic etiology, HFrEF or HFpEF
- NYHA Class III or ambulatory Class IV
- On guideline driven maximally tolerated medical and device therapy
- HF-hospitalization in the prior 12 months or elevated NT-proBNP

Exclusion Criteria

- LVEF<15%
- Isolated right-sided HF
- Moderate-severe RV dysfunction
 - TAPSE < 11mm</p>
- Severe pulmonary hypertension
 - PASP > 70mmHg
- Stroke or thromboembolism past 6 months
- eGFR < 25mL·min⁻¹·1.73m⁻²

Procedures and Assessments

- <u>Procedures/Follow-Up</u>
 - Transfemoral venous approach, general anesthesia, TEE guidance
 - Anticoagulation for at least 3 months
 - Study follow-up (1, 3, 6, 12m and yearly to 5 y)

- Assessments
 - NYHA Class
 - 6MWT
 - Quality of Life (KCCQ, MHLF)
 - Right heart cath (3, 12m)
 - NT-proBNP
 - TTE
 - TEE (1-3, 12m)

Patient Population

SAPSpecial Access Program
22 patients enrolled at 1 center in Canada

FIM First-In-Man Multicenter Feasibility Study 16 patients enrolled in 5 centers in Israel and Spain

Follow-up 38 patients implanted (30 HFrEF, 8 HFpEF) 28 month median follow-up (Range 18-48 months)

Baseline Demographics

Variable	Patients (n=38)				
Demographics					
Age, years	66±9				
Male gender	35 (92)				
Body mass index, kg/m2	30±6				
Medical history					
NYHA class, %	III (97), IV (3)				
Ischemic cardiomyopathy)	30 (79)				
Myocardial infarction	26 (68)				
Atrial fibrillation	20 (53)				
Hypertension	32 (84)				
Diabetes	26 (68)				
Chronic kidney disease	23 (61)				
Stroke	4 (11)				
Treatment history					
ACE/ARB, : mg enalapril eq.	27 (71): 21±18				
β Blocker, : mg carvedilol eq.	38 (100): 30±19				
MRA, : mg spironolactone eq.	26 (68): 15±6				
Loop Diuretic, : mg furosemide eq.	33 (87): 123±135				
CRT-D or ICD	28 (74)				
CRT	15 (39)				

Variable	Patients (n=38)			
Laboratory / Echocardiography				
eGFR, mL·min ⁻¹ ·1.73 m ⁻²	54 ± 20			
NT-proBNP, pg/ml	2640 ± 2301			
Ln NT-proBNP, pg/ml	7.5 ± 0.9			
LVEF ≥ 0.40	21.1			
LVEF, % (HFrEF)	26 ± 7			
LVEF, % (HFpEF)	50 ± 9			
6-Minute Walk Distance, m	289 ± 112			
Hemodynamics				
Systolic BP, mmHg	116 ± 19			
Diastolic BP, mmHg	66 ± 9			
Heart Rate, bpm	69 ± 9			
Pulmonary wedge pressure, mmHg	21 ± 5			
Right atrial pressure, mmHg	8 ± 4			
Pulmonary artery systolic pressure, mmHg	44 ± 11			
Pulmonary artery mean pressure, mmHg	30 ± 7			
Pulmonary vascular resistance, Wood Units	2.8 ± 1.6			
Cardiac output, L·min-1	4.4 ± 0.9			
Cardiac index, L·min-1·m-2	2.2 ± 0.4			

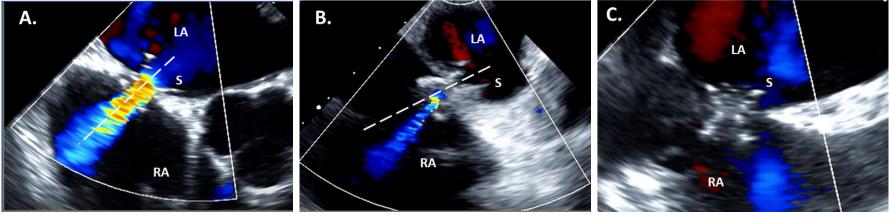
Patients (n=38)

Procedural and Safety Outcomes

- Shunt successfully implanted in 38/38 patients.
- Device or procedure related MACNE at 3M and 12M: 2.6%.
- All cause MACNE at 12M: 7.9%.

PROCEDURAL/IN-HOSPITAL			
Successful device implantation	38 (100)		
Shunt patency at procedural TEE	38 (100)		
Device embolization/dislocation	0		
Need for a 2 nd device	0		
Procedural time, min	72 ± 24		
Hospitalization days (median, IQR)	1, 1-2		
Device/procedure-related MACNE			
Cardiac tamponade	1 (2.6%)		

SAFETY OUTCOMES (full 12-month follow-up)			
Cumulative device/procedure-related MACNEs			
Death	0		
Stroke	0		
Cardiac tamponade	1 (2.6)		
Device embolization	0		
Device infection	0		
Reintervention or surgery	0		
Overall device/procedure-related MACNE	1 (2.6)		
Cumulative all-cause MACNEs			
Death	2 (5.2)		
Stroke 0			
Systemic embolism 0			
Ventricular tachycardia	1 (2.6)		
Myocardial infarction	0		


Functional, Echo and Hemodynamic Parameters

Variable	Baseline (n=38)	3 Months (n=36)	12 months (n=36)	*p-value
Functional Status/Quality-of-Life				
NYHA III-IV	38 (100)	8 (22)	14 (39)	<0.001
NYHA I-II	0 (0)	28 (78)	22 (61)	<0.001
KCCQ/MLHFQ (improve ≥5 points)	-	27 (74)	26 (73)	<0.001
6-MWT (m)	290±112	340±94	324±105	0.012
Laboratory parameters				
Ln NT-pro BNP (pg/mL)	7.5 ± 0.9	7.4 ± 1.0	7.5 ± 0.9	0.83
eGFR (ml·min ⁻¹ ·1.73 m ⁻²)	54± 20	55 ± 23	53 ± 22	0.92
Echocardiographic variables				
LVEF (HFrEF, %)	26 ± 7	27 ± 9	28 ± 8	0.54
LVEF (HFpEF, %)	50 ± 9	52 ± 10	54 ± 9	0.74
MR Grade	3.9 ± 1.5	3.5 ± 1.2	3.5 ± 1.3	0.51
LAVI (ml/m²)	42 ± 13	42 ± 13	41 ± 15	0.84
TAPSE (mm)	16 ± 4	17 ± 4	16 ± 4	0.94
Qp/Qs	0.99 ± 0.11	1.17 ± 0.12	1.10 ± 0.13	0.005
Hemodynamics				
PCWP (mmHg)	21 ± 5	20 ± 7	19 ± 7	0.49
RAP (mmHg)	8 ± 4	9 ± 5	9 ± 4	0.51
PAP, mean (mmHg)	30 ± 7	29 ± 8	30 ± 10	0.97
CI (L/min/m ²)	2.2 ± 0.4	2.4 ± 0.4	2.3 ± 0.5	0.27
PVR (Wood Units)	2.8 ± 1.6	2.6 ± 1.1	2.8 ± 1.9	0.73

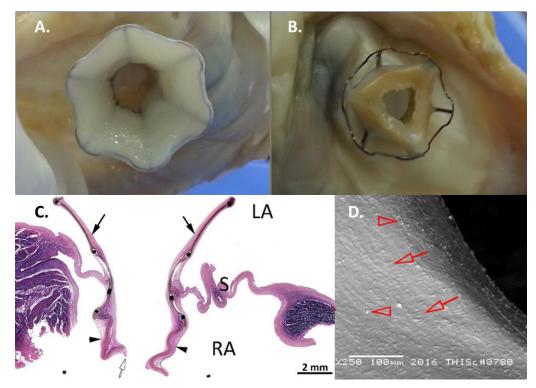
Shunt Valve Function at 1-3 and 12 Months (TEE)

- Shunt patency at 1-3 months: 36/36 (100%)
- 12-month shunt occlusion: 5/36 (14%)
- 12-month shunt stenosis (TEE Color Doppler vena contracta in valve region narrowed/skewed): 13/36 (36%)
- No thrombus, no shunt migration, no erosion of adjacent structures

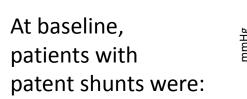
A. Widely Patent Shunt

B. Stenotic Shunt; narrowed/skewed

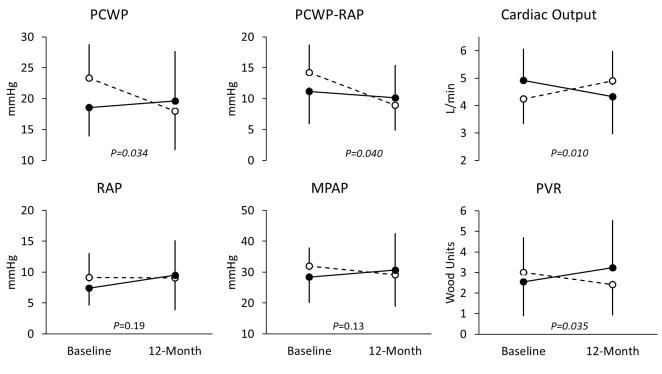
C. Occluded Shunt


	Patent	Stenotic	р
Vena Contracta	3.3±0.6 mm	1.5±1.5 mm	0.001
Qp:Qs	1.17±0.12 mm	1.05±0.12 mm	0.023

Pathological Examination (Stenotic Shunt)

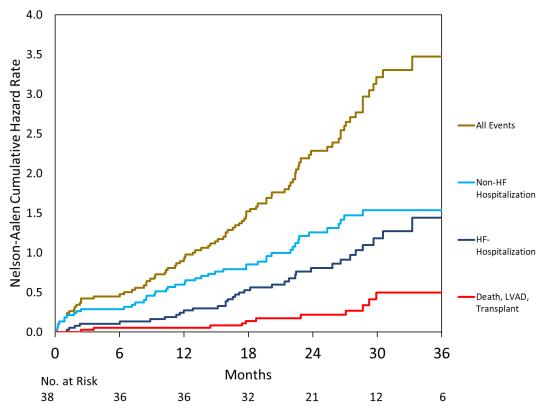

2.5 year explant specimen from transplanted patient

- A. LA view. Orifice widely patent.
- B. RA view. Pannus thickening with stenosis of bioprosthetic leaflets.
- C. Axial Section (H&E).Fibrocellular neoendocardium (pannus) infiltration of leaflets.
- D. SEM. Full endothelialization of lumen (CD31+)

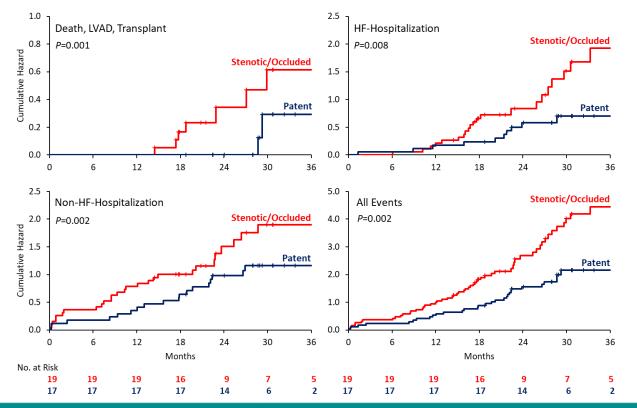


Hemodynamic Changes Grouped by Shunt Patency at 1-Year Follow-Up

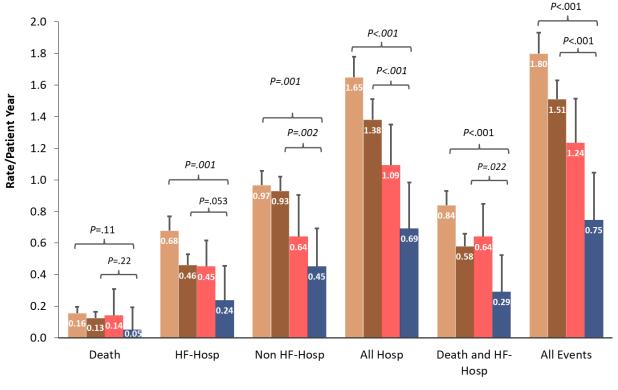
Older


- \downarrow eGFR
- ↓ 6MWT
- ↑ PCWP, ↓ CO

Patent O Stenotic/Occluded •



Cumulative Clinical Events (all patients)



Long-term Clinical Outcomes Grouped by Shunt Patency

Comparison with CMEMs Champion Study

Studies had similar:

- eligibility criteria
- baseline characteristics including hemodynamics
- use of medical and device therapies including dosing

Champion control 18M (n=280)SHUNT stenotic/occluded 28M (n=19)

Champion treatment 18M (n=270)
 SHUNT patent 28M (n=17)

Conclusions

- Interatrial shunting with the V-Wave system for treating patients with HFrEF and HFpEF was feasible, safe, and associated with promising efficacy data in terms of functional improvement and reduction of cardiovascular events
- There was a high frequency of shunt stenosis/occlusion at 1-year, likely secondary to pannus infiltration of the bioprosthetic leaflets, which associated with poorer hemodynamic and longer-term clinical outcomes
- Shunt patency was associated with sustained low morbidity and mortality
- Implementing modifications to improve device patency over time while maintaining hemodynamic and functional benefits is worthwhile prior to launching a randomized trial to confirm these findings

Participating Centers / Investigators

- Quebec Heart and Lung Institute, Laval University, Quebec City, Canada
 - Josep Rodés-Cabau, Sebastien Bergeron, Mathieu Bernier
- Hospital Clinico Universitario de Valladolid, Valladolid, Spain
 - Ignacio Amat-Santos
- Rabin Medical Center, Petah Tikva, Israel
 - Tuvia Ben Gal
- Hospital Clinico San Carlos, Madrid, Spain
 - Luis Nombela-Franco
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
 - Bruno Garcia del Blanco
- Rambam Medical Center, Haifa, Israel
 - Arthur Kerner

