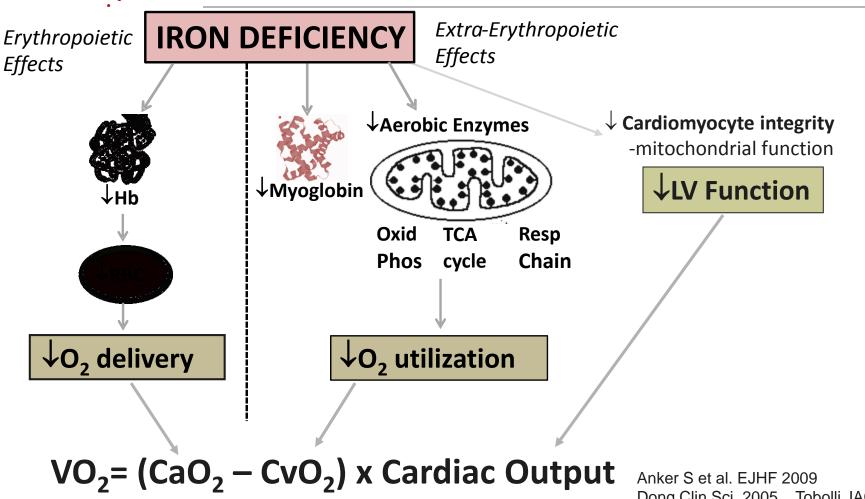


Oral Iron Repletion effects on Oxygen UpTake in Heart Failure (IRONOUT)

Gregory D. Lewis, M.D. on behalf of The NHLBI Clinical Heart Failure Network

U.S. Department of Health and Human Services National Institutes of Health



• Iron deficiency is present in ~50% of patients with chronic heart failure with reduced ejection fraction (HFrEF).

• Iron deficiency in an independent predictor of mortality in patients with HFrEF.

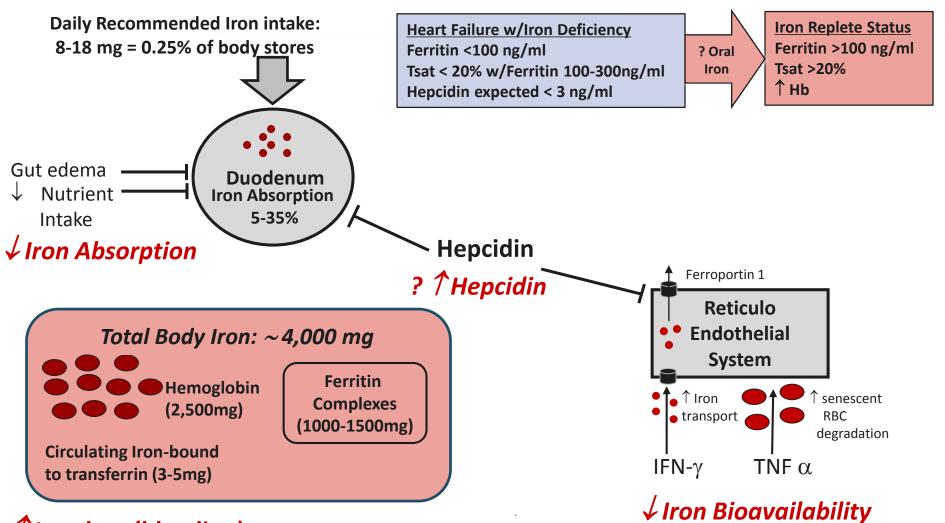
Background : Iron Deficiency Impacts FAILURE NETWORK Functional Capacity in Heart Failure

Gold Standard Objective Measurement of Functional Capacity

Anker S et al. EJHF 2009 Dong Clin Sci, 2005, Tobolli JACC 2008 Petering LH, Ann Nutr Metab 1990 Melanovsky et al, Circulation HF 2016

Two multicenter intravenous iron repletion trials in HFrEF:

- FAIR-HF and CONFIRM-HF^{1,2}
- \uparrow 6 min walk distance, \uparrow quality of life, \downarrow HF hospitalizations

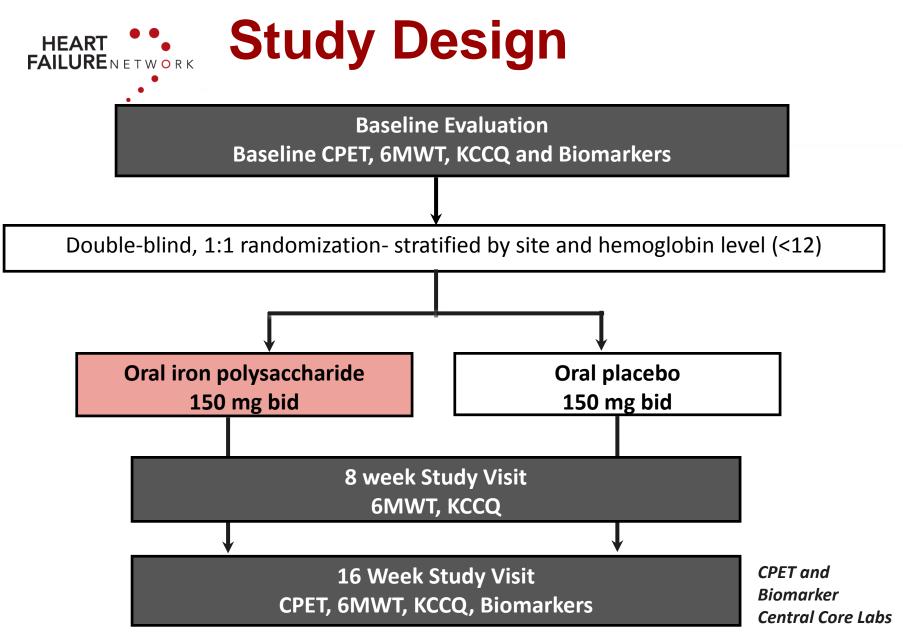

Promising results from IV iron studies have served as an impetus for clinicians to prescribe iron supplementation. However:

-Regular administration of IV iron poses logistical challenges and is expensive

-Oral iron is safe and readily available, but its efficacy in HF is unknown

-Patient characteristics that influence responsiveness to oral iron in HF remain undefined

HEART FAILURE NETWORK Background: Iron Homeostasis in HF


Tiron loss (bleeding)

Oral iron polysaccharide is superior to oral placebo in improving exercise capacity (peak VO₂) in patients with HFrEF and iron deficiency at 16 weeks.

- 225 patients with NYHA Class II-IV HF symptoms and LVEF≤0.40
- Serum ferritin between 15-100 ng/ml or serum ferritin between 100-299 ng/ml with transferrin saturation <20%
- Hemoglobin 9.0-13.5 g/dL in females, 9.0-15 g/dL in males
- Stable evidence-based medical therapy for HF
- Able to perform cycle/treadmill exercise testing with achievement of a respiratory exchange ratio of at least 1.0

- **Primary Endpoint:** Δ peak VO₂ from baseline to week 16
- Secondary Endpoints:
 - Δ 6MW distance, O₂ kinetics, ventilatory efficiency
 - Δ NT-proBNP and Δ KCCQ quality of life score

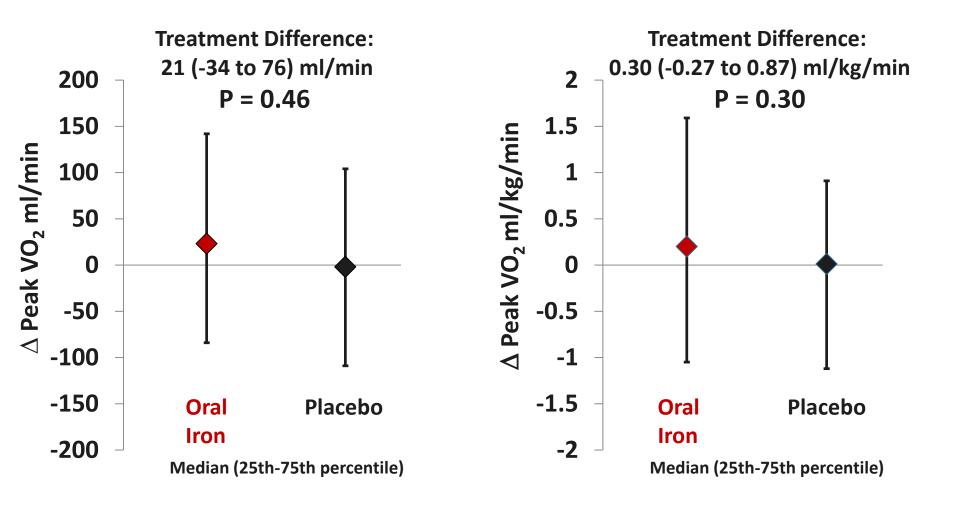
• Exploratory Endpoints

- Δ iron studies, Δ renal function
- ΔVO_2 at the ventilatory threshold
- Time to death or worsening HF

HEART FAILURE N ET WORK **Baseline Features (n=225)**

Characteristic	Oral Iron, N=111	Placebo, N=114
Age, median (IQR), y	63 (54-71)	63 (55-70)
Female sex	40%	32%
Racial Minority	29%	25%
NYHA II/III	73%/27%	60%/40%
LVEF (%)	25 (20-34)	25 (20-33)
Peak VO ₂ , median (IQR), ml/kg/min	13.3 (11.4-15.8)	12.9 (10.5-15.6)
HF Duration, median (IQR), y	5.3 (1.4-10.3)	6.2 (2.0-9.8)
Ischemic etiology of HF	77%	78%
History of Hypertension	72%	73%
History of Atrial fibrillation	39%	38%
History of Diabetes mellitus	34%	44%

There were no significant baseline differences between groups



HEART FAILURE N ETWORK **Baseline Features (n=225)**

Characteristic	Oral Iron, N=111	Placebo, N=114
Concomitant medications		
β-Blocker	95%	96%
ACE inhibitor or ARB	88%	80%
Aldosterone antagonist	61%	60%
Laboratory values		
NT-proBNP, pg/ml	1072 (413-2286)	1170 (527-2530)
Estimated GFR, ml/min/1.73m ²	56 (43-71)	61 (46-73)
Hemoglobin, g/dL	12.6 (11.7-13.3)	12.7 (11.8-13.4)
Ferritin, ng/mL	69 (42-98)	69 (37-98)
Transferrin Saturation, %	18 (14-24)	17 (15-21)
Sol. transferrin receptor, mg/L	3.8 (3.3-4.8)	3.8 (2.9-4.8)
Hepcidin, ng/ml	6.6 (3.3-10.8)	6.5 (3.3-11.1)

There were no significant baseline differences between groups

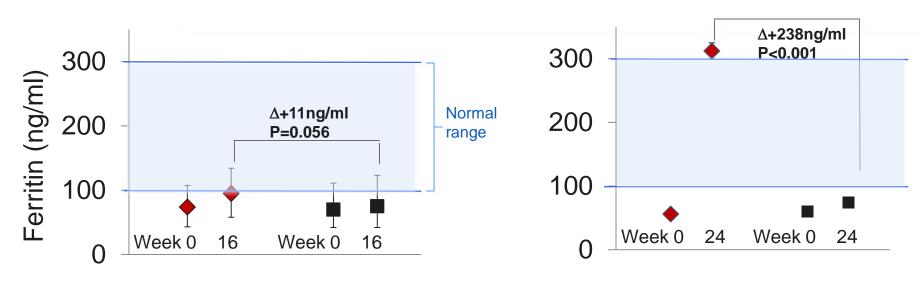
HEART FAILURE NETWORK Results: Primary Endpoint

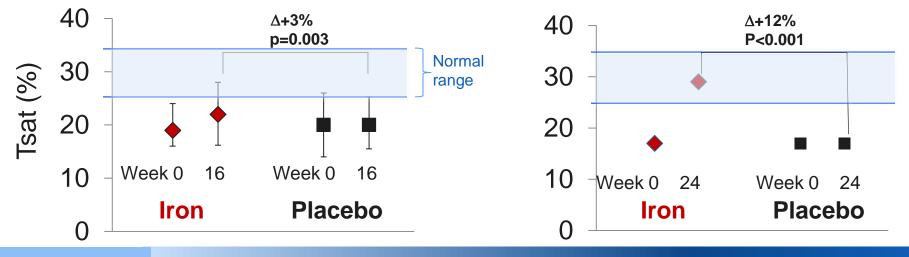
Results: Secondary and Exploratory Endpoints

Characteristic	Oral Iron	Placebo	p-
	N=111	N=114	Value
Secondary end points			
Δ 6 MW distance at 16 weeks, meters	19	32	0.19
Δ Mean response time, seconds	2.5	1	0.19
Δ Ventilatory efficiency (VE/VCO ₂ slope)	-0.3	-0.3	0.35
Δ NT-BNP level, pg/ml	4	-37	0.48
Δ KCCQ score at 16 weeks	3.1	3.0	0.57
Exploratory Endpoints			
Δ Ventilatory threshold (ml/min)	22	-2	0.07
Δ Creatinine, mg/dL	0.03	0.00	0.65
Δ Cystatin C, mg/L	0.02	0.01	0.12

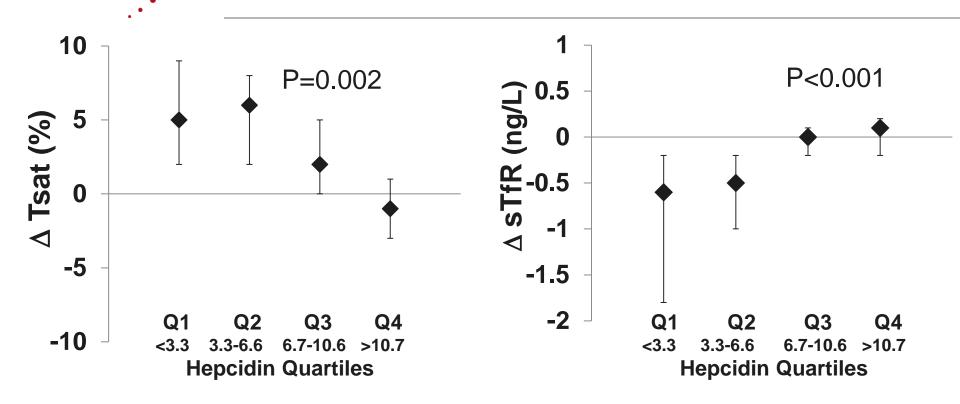
Results: Safety Endpoints

Characteristic	Oral Iron N=111	Placebo N=114	p- Value
Safety end points, No. (%)			
Adverse events	39 (35%)	45 (39%)	0.50
Serious adverse events	11 (10%)	10 (9%)	0.77
Permanent study drug discontinuation	15 (14%)	17 (15%)	0.76
Death or cardiovascular re-hospitalization	14 (13%)	12 (11%)	0.63


Results: A Iron Studies


IRONOUT-HF

HEART


FAILURENETWORK

vs. FAIR-HF (IV Iron)

Results: Hepcidin Levels Predict Responsiveness to Oral Iron

Higher baseline hepcidin levels were related to:

 $\downarrow \Delta$ iron stores:

HEART

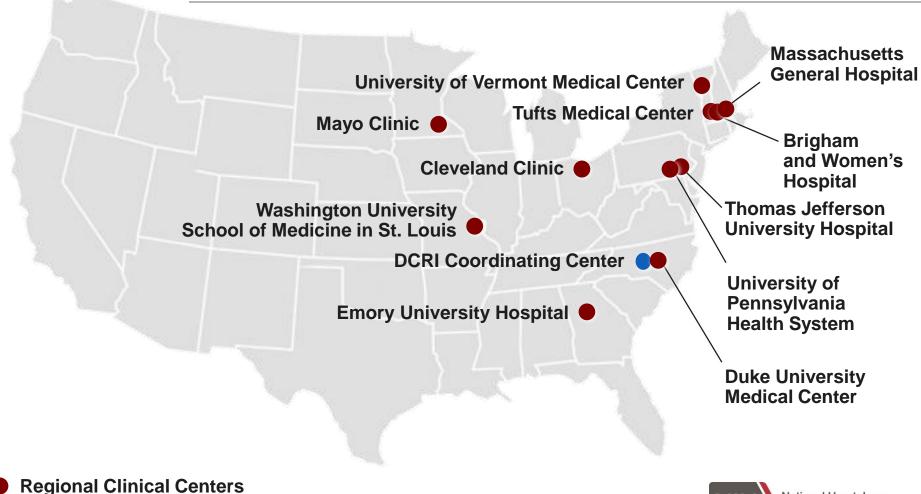
FAILURENETWORK

 $\downarrow \Delta$ iron bioavailability: Δ Tsat r=-0.29, p=0.003 $\downarrow \Delta$ cellular iron levels: Δ sTr r=0.49, p<0.001 Δ Ferritin r=-0.30, p=0.003

Rates of venous congestion were low: -12% of patients had ↑ JVP -10% of patients had >mild edema

There was no major bleeding episodes in patients receiving oral iron

Results: Relationship between iron biomarkers and endpoints			
<pre>Higher baseline Tsat leve ↑ Peak VO₂: ↑ 6 min walk distance: ↓ NT-proBNP: ↑ KCCQ score:</pre>	els were related to: r=0.17, p=0.01 r=0.28, p<0.001 r=0.16, p=0.015 r=0.28, p<0.001		


 Δ Tsat was modestly correlated with Δ peak VO₂ (r=0.17, p=0.03)

Patients in the highest quartile of Δ Tsat (>7%) demonstrated improvement in KCCQ scores (p=0.046) and a trend toward higher VO₂ at the ventilatory threshold (p=0.07)

HEART FAILURE NETWORK Summary and Conclusions

- High dose oral iron minimally repleted iron stores and did not improve peak VO₂ in patients with iron deficiency and HFrEF.
- Elevated hepcidin levels predicted refractoriness to oral iron repletion, whereas rates of venous congestion and bleeding were low during the study.
- These results do not support use of oral iron supplementation in patients with HFrEF.

HEART FAILURE NETWORK Heart Failure Clinical Research Network

Coordinating Center

www.hfnetwork.org

