

How to Optimize Bifurcation PCI

Takashi Akasaka, MD, PhD, FESC, FAPSC, FJCS
Department of Cardiovascular Medicine
Wakayama Medical University, Japan

IMPACT YOUR PRACTICE

Takashi Akasaka, MD, PhD

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Grant/Research Support: Abbott Vascular Japan

Boston Scientific Japan

Nipro Inc. Terumo Inc.

Consulting Fees/Honoraria: Abbot Vascular Japan

HeartFlow Japan

Nipro Inc. Terumo Inc.

iMPACT YOUR PRACTICE

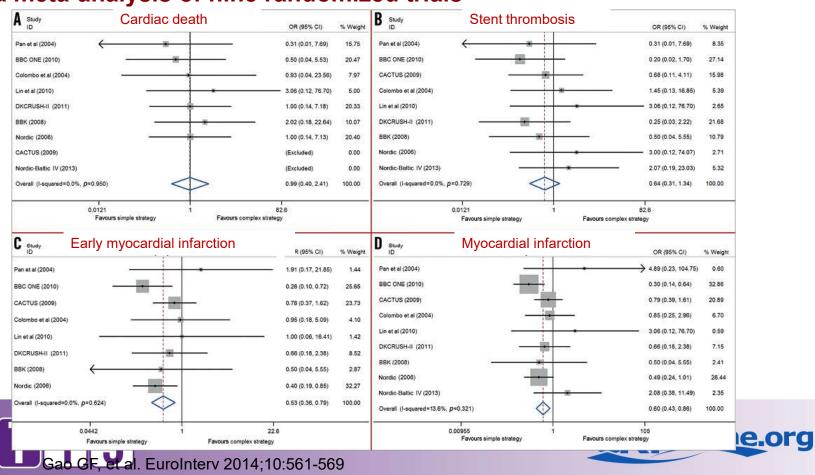
PCI for LM bifurcation lesions

➤ Bifurcation lesion PCI might be 15-20% of all PCI cases in daily clinical practice, and complex procedure may be required sometimes.

Lefe` vre T et al. Catheter Cardiovasc Interv 2000; 49:274–283 lakovou I et al. J Am Coll Cardiol 2005; 46:1446–1455

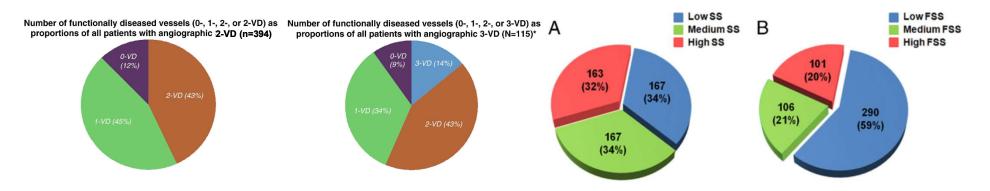
Higher risk for complications such as side branch occlusion, stent thrombosis, restenosis, etc. have been reported more frequently in bifurcation lesion PCI.

> lakovou I et al. JAMA 2005; 293 : 2126-2130 Colombo A et al. Circulation 2004; 109 : 1244-1249


Better clinical outcomes have been demonstrated in simple stent strategy compared with various 2 stents strategies.

> Gao GF, et al. EuroIntervention 2014;10:561-569 Cho S, et al. J Am Coll Cardiol Interv 2018; 11 : 1247-1258 Kandzari DE, et al. Circ Cardiovasc Interv. 2018; 11 : e007007

Simple vs complex stent strategies for bifurcation with DES: a meta-analysis of nine randomized trials



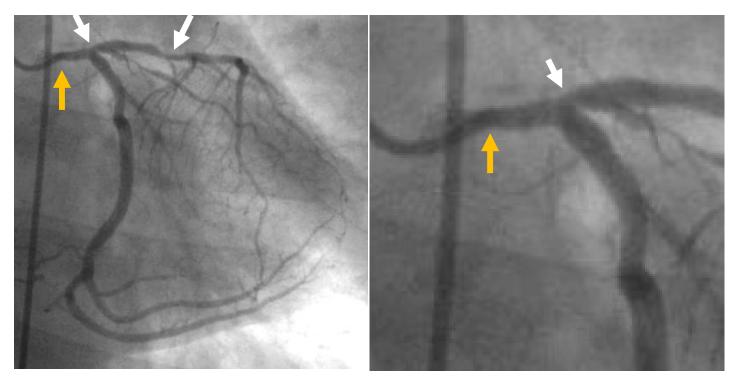
Lesion assessment in FAME Study Angiography vs FFR

Tonino PAL, et al. J Am Coll Cardiol 2010;55:2816-2821

Comparison between Classic & Functional SYNTAX Score

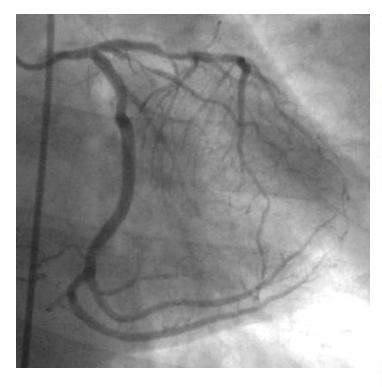
Nam CW, et al. J Am Coll Cardiol 2011;58:1211-1218

Angiographic 2-VD


Angiographic 3-VD

Classic SYNTAX score Functional SYNTAX score

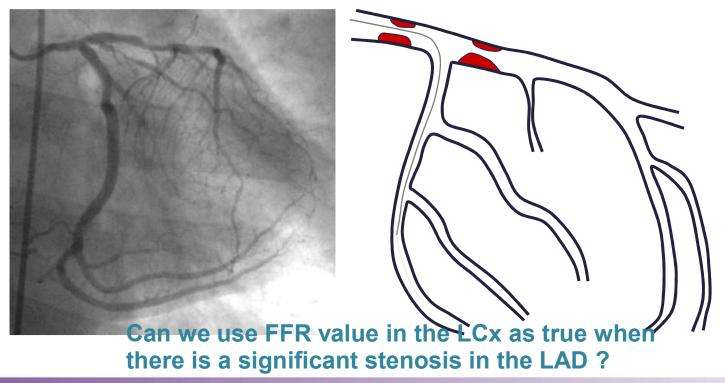
LMCA disease + LAD/Lcx lesion



Is LMCA stenosis significant?

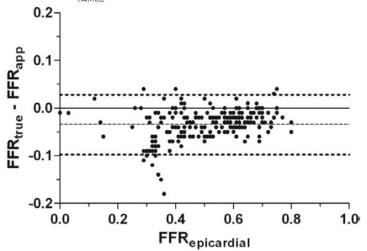
LMCA disease + LAD/Lcx lesion

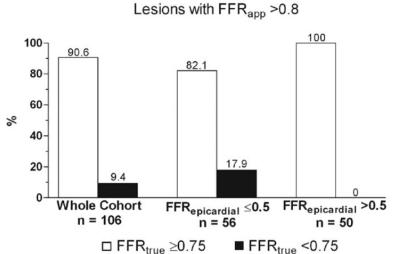
Severe stenosis in the prox. LAD



Mild stenosis in the LMCA

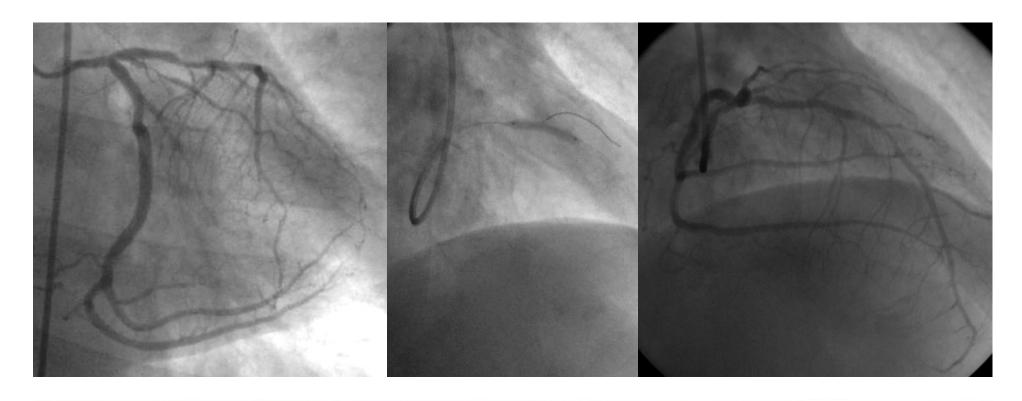
LM / bifurcation lesion - Effect of downstream disease-




LM / bifurcation lesion - Effect of downstream disease-

Fractional Flow Reserve Assessment of Left Main Stenosis in the Presence of

Flow Reserve Assessment of Left Main Stenois in the Presence of gp. David Daniels, Bernard De Bruyne, Hyun-Sook Kim, Fumiaki Ikeno, Jennifer Lyons, Nice H.J. Pijls and William F. Fearon wasc Interv 2013; 616-165; originally published online April 2, 2013; DOI: 10.1161/CIRCINTERVENTIONS, 112.000104 avascular Interventions is published by the American Heart Association, 7272 Greenville American Heart Association. All rights reserved. Print ISSN: 1941-7640. Online ISSN: 1941-7640.



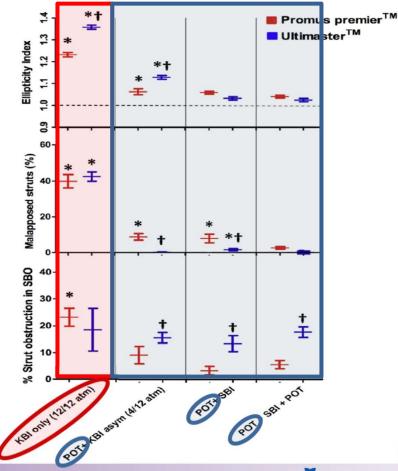
In cases with FFRLAD ≦0.5, true FFRLcx would be <0.75 even if apparent FFRLcx is >0.8.

Yong A, et al. Circ Cardiovasc Interv. 2013;6:161-165

PCI to LAD

Comparative Analysis of Sequential Proximal Optimizing Technique Versus Kissing Balloon Inflation Technique in Provisional Bifurcation Stenting

Fractal Coronary Bifurcation Bench Test

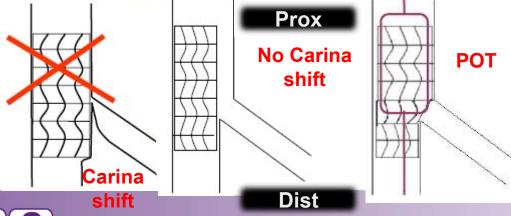

Gérard Finet, MD, PhD,* François Derimay, MD, MSc,* Pascal Motreff, MD, PhD,† Patrice Guerin, MD, PhD,‡ Paul Pilet, B Eng,‡ Jacques Ohayon, PhD,§ Olivier Darremont, MD,|| Gilles Rioufol, MD, PhD*

BACKGROUND In provisional bifurcation stenting, KBI fails to improve the rate of major adverse cardiac events. Proximal geometric deformation increases the rate of in-stent restenosis and target lesion revascularization.

METHODS A bifurcation bench model was used to compare KBI alone, KBI after POT, KBI with asymmetric inflation pressure after POT, and 2 sequences without KBI: initial POT plus SBI, and initial POT plus SBI with final POT (called "re-POT"). For each protocol, 5 stents were tested using 2 different drug-eluting stent designs: that is, a total of 60 tests.

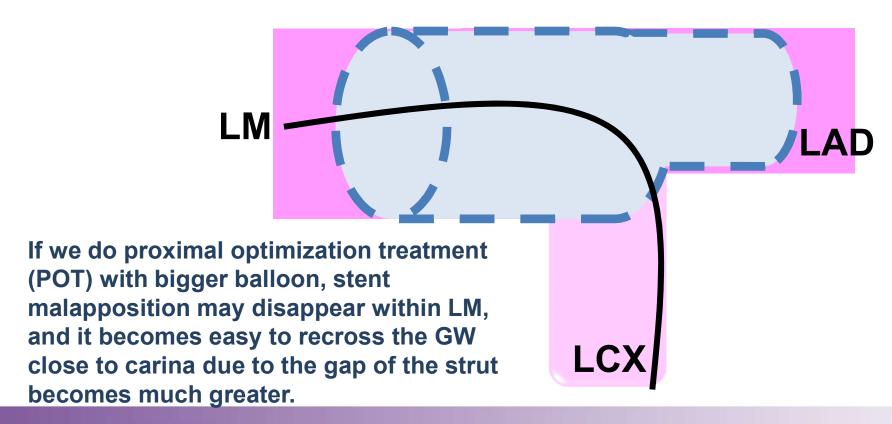
RESULTS Compared with the classic KBI-only sequence and those associating POT with modified KBI, the re-POT sequence gave significantly (p < 0.05) better geometric results: it reduced SB ostium stent-strut obstruction from 23.2 \pm 6.0% to 5.6 \pm 8.3%, provided perfect proximal stent apposition with almost perfect circularity (ellipticity index reduced from 1.23 \pm 0.02 to 1.04 \pm 0.01), reduced proximal area overstretch from 24.2 \pm 7.6% to 8.0 \pm 0.4%, and reduced global strut malapposition from 40 \pm 6.2% to 2.6 \pm 1.4%.

CONCLUSIONS In comparison with 5 other techniques, the re-POT sequence significantly optimized the final result of provisional coronary bifurcation stenting, maintaining circular geometry while significantly reducing SB ostium strut obstruction and global strut malapposition. These experimental findings confirm that provisional stenting may be optimized more effectively without KBI using re-POT. (J Am Coll Cardiol Intv 2015;8:1308-17)

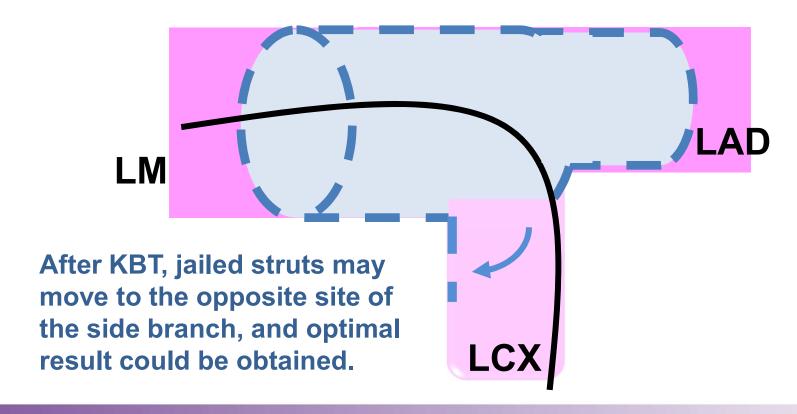


Importance of proximal optimization technique (POT)

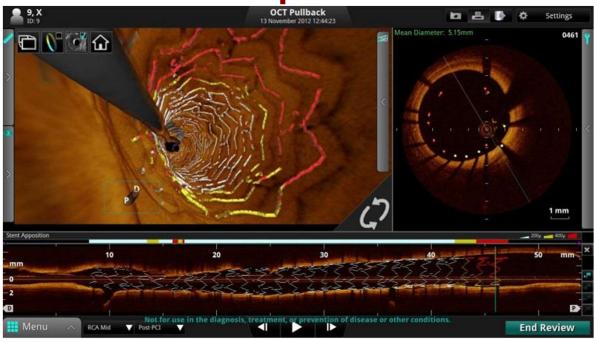
In bifurcation, there is a vessel size change in main vessel at proximal and distal of side branch.


If the stent size selected to adjust proximal reference, stent distal edge dissection and carina shift may happen.

If the stent selected to adjust distal reference, no edge dissection and no carina sift may happen, however, stent malapposition may occur. Proximal optimization technique (POT) should be performed for avoiding carina shift.



Importance of proximal optimization technique (POT)



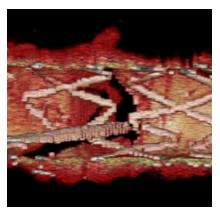
Importance of proximal optimization technique (POT)

New Development in OCT

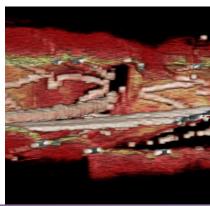


3-D reconstruction & auto-detection of incomplete apposition of stent can be demonstrated as fly through image in addition to cross sectional & longitudinal images by newly developed OCT.

New Development in OCT



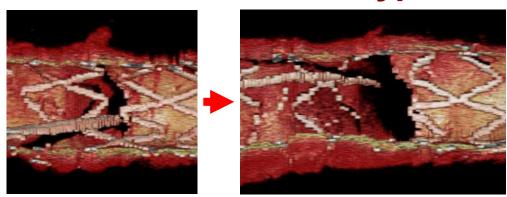
Re-crossing wire position in the jailed side branch can be easily identified by newly developed OCT software and improvement of side branch KBT procedure could be expected by the guidance of new OCT.



Relation between stent link & side branch orifice

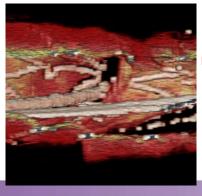
Stent link did not locate at side branch orifice:

Link Free type



Optimal GW re-cross point:

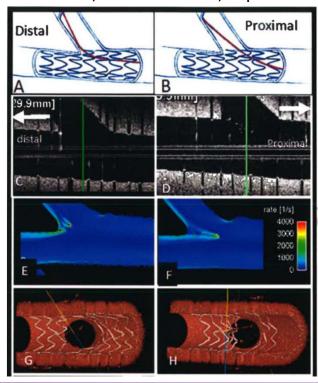
Distal cell close to carina

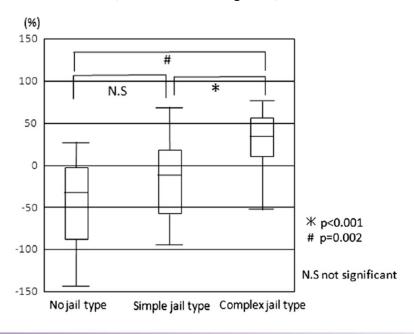

Link Free type

GW distal cell re-cross

Kissing ballooning

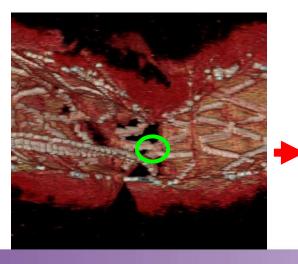
Optimal

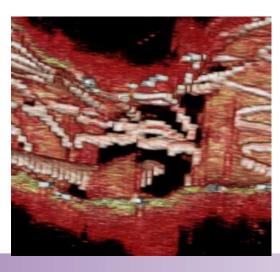



Impact of the rewiring position Strut malapposition & shear stress

Onuma Y, et al. EuroInterv 2018;accepted

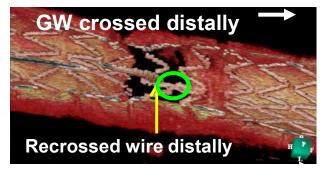
Comparison of % reduction of the side branch flow area Comparison among each jailed type


Nakamura T, et al. Int J CV Imag 2017;33: 797 - 806

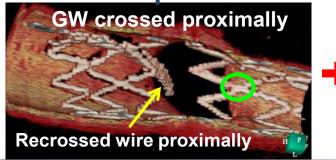


Relation between stent link & side branch orifice

If the stent link locates closed to carina, it would be difficult to remove the jailed struts by KBT:
Link connecting to carina type

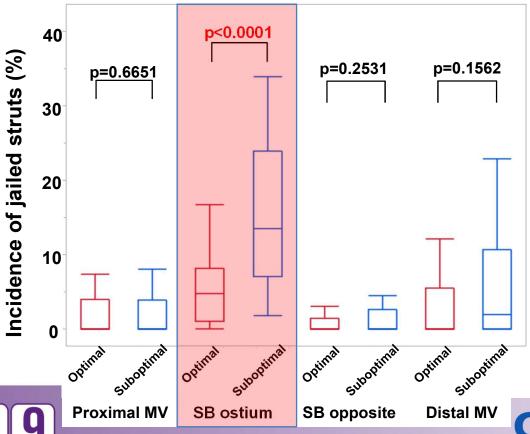


Suboptimal


Link connecting to carina type

GW recross distal cell

GW recross proximal cell



Frequency of jailing configuration & GW rewiring position

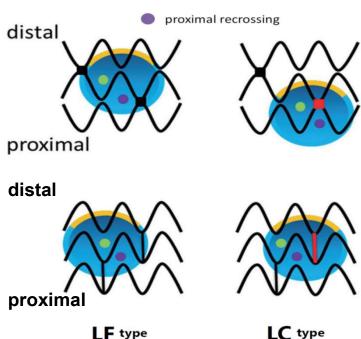
Okamura T, et al. EuroIntervention 2018;13: e1785 – e1793 Guidewire recrossing After kissing ballooning Group distally **Optimal** 54 cases "Link-free type" 58 proximally 105 Remaining jailed struts cases distally **Suboptimal** 51 cases "Link-connecting Strut deformation 33 to carina type" proximally 47 **CRT19** CRTonline.org Remaining jailed

Incidence of ISA at each segment

Okamura T, et al. EuroIntervention 2018;13:e1785-e1793

RTonline.org

Angiographic ISR at 9 Month


Okamura T, et al. EuroIntervention 2018;13:e1785-e1793

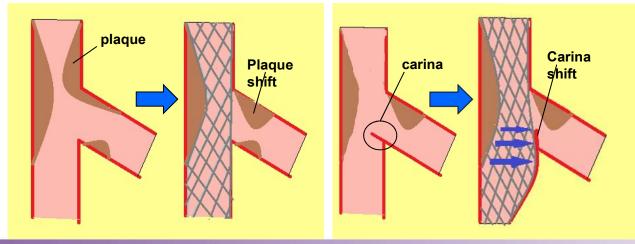
	All	Optimal	Suboptimal	P value
n	87	48	39	
ISR	12(13.8%)	4(8.3%)	8(20.5%)	0.1254
PMV	0(0%)	0(0%)	0(0%)	-
DMV	1(1.1%)	1(2.1%)	0(0%)	1.0000
Side Br Orifice	12(13.8%)	4(8.3%)	8(20.5%)	0.1254

Stent design based on the rink position & wire re-cross point at bifurcation orifice distal recrossing

Peak to Valley (P-V) DES	Peak to Peak (P-P) DES
XIENCE	Synergy Resolute Onyx Ultimaster
	Offset Peak to Peak

- Link free -

We cannot control the rink position on the side branch orifice, and it should be by chance.



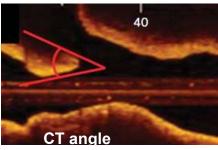
- Link connecting -

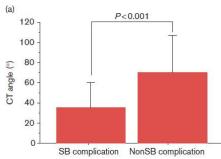
Mechanism of side branch occlusion after stenting

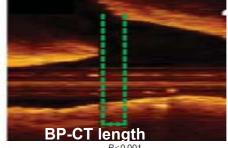
Although plaque shift, carina shift, side branch dissection, spasm, thrombus formation, etc. have been proposed as the cause of side branch occlusion, plaque shift and carina shift are thought to be main mechanisms of side branch occlusion.

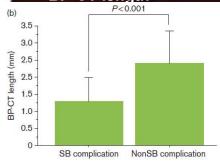
CRT19

Plaque shift

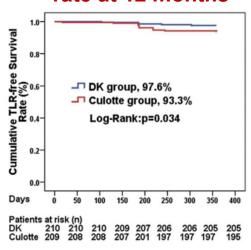

Carina shift

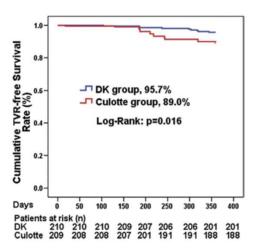



Prediction of side branch occlusion by OCT

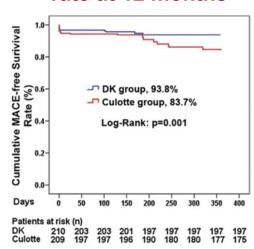

Watanabe M et al. Coron Artery Dis 2014; 25: 321-329

Side branch occlusion might be occurred less frequently in cases with carina tip (CT) angle ≥50 degree and branch point to carina tip(BP-CT) length ≥1.7mm.



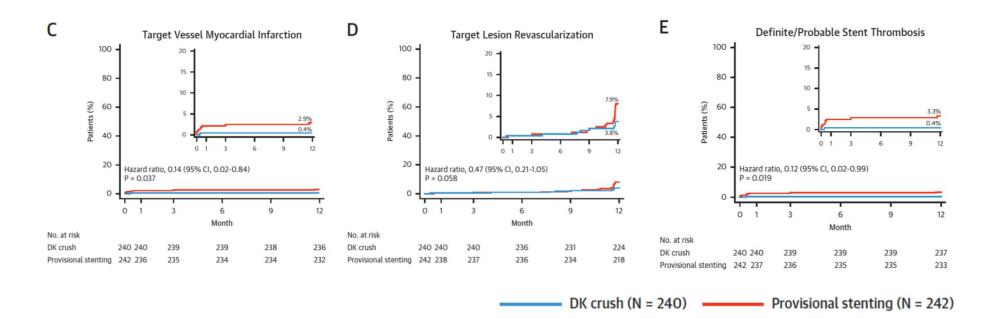


Comparison between DK crush & culotte stenting for LM bifurcation lesions: DKCRUSH-III study


TLR free survival rate at 12 months

TVR free survival rate at 12 months

MACE free survival rate at 12 months



CRT19

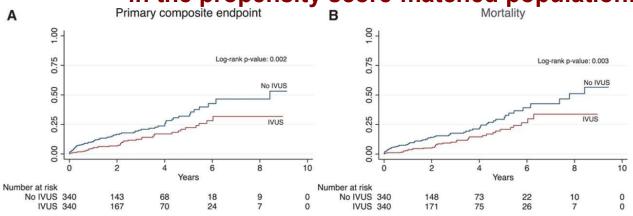
Chen SL, et al. J Am Coll Cardiol 2013:61:1482-1488

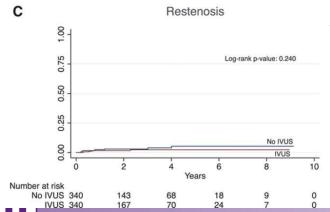
Comparison between DK crush & provisional T stenting for LM bifurcation lesions: DKCRUSH-V study

CRT19

Chen SL, et al. J Am Coll Cardiol 2017:70:2605-2617

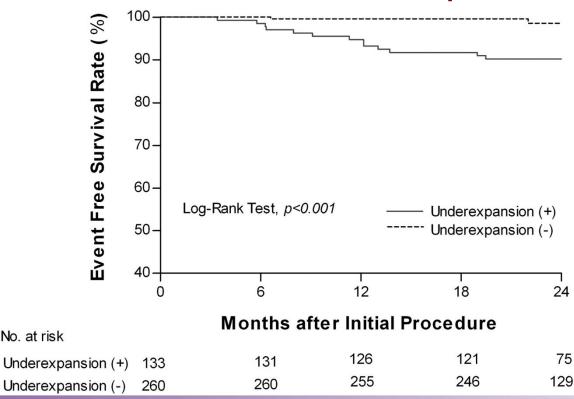
Advantages & disadvantages of different double-stent techniques for unprotected LMCA bifurcation lesions?


	Advantages	Disadvantages
Culotte	Compatible with 6 Fr guider Independent of bifurcation angle Predictable scaffolding	Leaves multiple layers of strut Potential acute closure of MB
Classic crush	Relatively simple Low risk of SB occlusion Good coverage of SB ostium	Difficult FKI Requires 7 or 8 Fr guider Leaves multiple layers of strut
Mini-crush	Minimises multiple layers of strut Good scaffolding at SB ostium Facilitates FKI Compatible with 6 Fr guider using balloon crushing	Still leaves multiple layers of strut
DK-crush	Good scaffolding at SB ostium Facilitates FKI Compatible with 6 Fr guider	Complex procedural steps
Simultaneous kissing stenting	No risk of occlusion for both branches No need to re-cross any stent Technically easy and quick	Requires 7 or 8 Fr guider Leaves long metallic carina Over-dilatation in proximal MB Diaphragmatic membrane formation at the overlapped stents Difficulty in repeat revascularisation
T-stenting	Good SB scaffolding with angles >70°	Potential gap at SB ostium Protrusion of SB stent into the MB (in the case of TAP)
FKI: final kissing ba	alloon inflation; MB: main branch; SB: side branch; TAP: T-ste	nting and protrusion



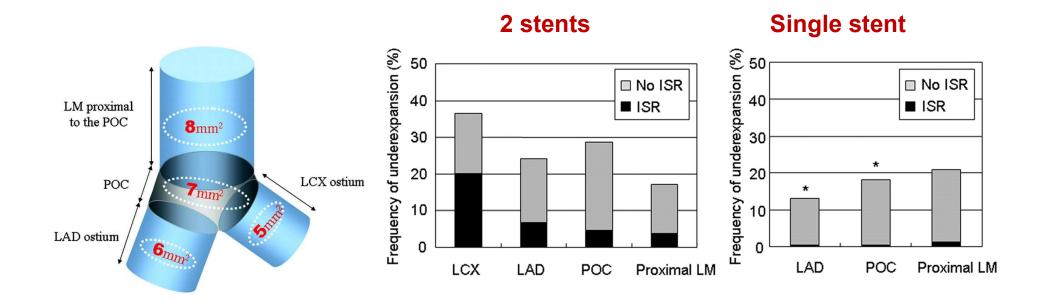
Rho JH, et al. EuroIntervention 2015;11:V125-V128

Comparison between IVUS- vs angio-guided PCI for LM disease in the propensity score-matched population. Primary composite endpoint B Mortality



Swedish Coronary Angiography & Angioplasty Registry (SCCAAR) between 2005 & 2014

Kaplan-Meier curve for MACE-free survival in cases with and without underexpansion



No. at risk

Kang SJ, et al. Circ Cardiovasc Interv. 2011;4:562-569

Minimal stent area (MSA) cut-off values for the prediction of angiographic in-stent restenosis (ISR)

CRT19

Soo-Jin Kang et al. Circ Cardiovasc Interv. 2011;4:562-569

Take home message

- Better clinical outcomes have been demonstrated in simple stent strategy compared with 2 stents strategies, and proximal optimization technique (POT) may provide much better PCI prognosis within simple stent strategy.
- Improvement of clinical outcomes in bifurcation lesion PCI can be expected by the guidance of FFR, IVUS, and 3D-OCT, although there are not enough data to support the reduction of the adverse clinical events using OCT guided PCI for bifurcation lesions at the moment.
- ➤ Randomized prospective studies with greater number of study population should be planned to demonstrate the improvement of clinical outcome by 3D-OCT guided PCI for LM bifurcation lesions in the near future.

Thank you for your kind attention!!

Welcome to APSC 2020 in Kyoto, Japan!!

2018 ESC/EACTS Guidelines on myocardial revascularization

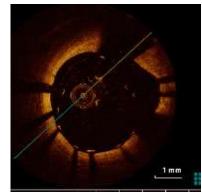
Society of Cardiology (ESC) and European Association for Cardio-Thoracic Surgery (EACTS)

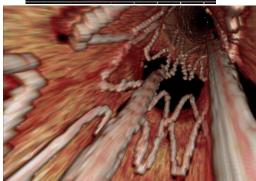
Developed with the special contribution of the European **Association for Percutaneous Cardiovascular Intervention**

Authors/Task Force Members: Franz-Josef Neumann* (ESC Chairperso (Germany), Miguel Sousa-Uva*1 (EACTS Chairperson) (Portugal), And (Sweden), Fernando Alfonso (Spain), Adrian P. Banning (UK), Umberto (UK), Robert A. Byrne (Germany), Jean-Philippe Collet (France), Volkn (Germany), Stuart J. Head (The Netherlands), Peter Jüni (Canada), Adnan Kastrati (Germany), Akos Koller (Hungary), Steen D. Kristenser Josef Niebauer (Austria), Dimitrios J. Richter (Greece), Petar M. Dirk Sibbing (Germany), Giulio G. Stefanini (Italy), Stephan Wil

Document Reviewers: William Wijns (ESC Review Co-ordinator) (Ireland), David Glineur Co-ordinator) (Canada), Victor Aboyans (France), Stephan Achenbach (Germany), Stefan (Norway), Felicita Andreotti (Italy), Emanuele Barbato (Italy), Andreas Baumbach (UK), J (Canada), Héctor Bueno (Spain), Patrick A. Calvert (UK), Davide Capodanno (Italy), Piroze

(Switzerland), Rashmi Yadav¹ (UK), Michael O. Zembala¹ (Poland)


The Task Force on myocardial revascularization of the Eu Recommendations on intravascular imaging for procedural optimization


Recommendations	Class ^a	Level ^b	
IVUS or OCT should be considered in selected patients to optimize stent implantation. 603,612,651–653	lla	В	
or OCT should be considered to optimize treatment of unprotected left main lesions. ³⁵	lla	В	100

3D-OCT image information

- Stent apposition
- Stent cell figure
- Location of stent link in relation to side branch orifice
- GW recrossing position

Using specific off-line 3D-software provided by Dr. Okamura

3-D OCT guided bifurcation stenting (pilot study)

Okamura T, et al. EuroIntervention 2018;13:e1785-e1793

Study population

105 bifurcation lesions

Primary endpoint

Frequency of re-wiring by 3-D OCT guidance: re-wiring should be required again more than 30 % cases.

Frequency of incomplete stent apposition by 3-D OCT guidance.

Secondary endpoint

Incidence of ISA:

MACE:

Japanese registry for 3-D OCT guided bifurcation stenting

Study population

600 bifurcation lesions

Side branch opening guided by 3-D OCT:400 Optimal Suboptimal

No side branch opening:200

Primary endpoint

Incidence of side branch restenosis at 1 year.

Secondary endpoint

MACE at 3 years

