

Ticagrelor Monotherapy Beyond One Month Versus Conventional Therapy On Adjudicated Ischemic **And Bleeding Endpoints Following Drug Eluting Sent Implantation. Primary Results of the GLOBAL LEADERS Adjudication Sub-StudY** (GLASSY)

M. Valgimigli, MD, PhD

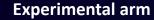
Swiss Cardiovascular Center Bern, Inselspital, Bern, Switzerland on behalf of GLASSY Investigators

Declaration of Interest

Dr. Valqimiqli reports grants and personal fees from Abbott, personal fees from Chiesi, personal fees from Bayer, personal fees from Daiichi Sankyo, personal fees from Amgen, grants and personal fees from Terumo, personal fees from Alvimedica, grants from Medicure, grants and personal fees from Astrazeneca, personal fees from Biosensors, personal fees from Idorsia, outside the submitted work.

Background

- Dual antiplatelet therapy (DAPT) mitigates the risks of cardiac and, to lesser extent, cerebrovascular ischemic events.
- However, prolonged DAPT carries a heightened major bleeding risk.
- P2Y₁₂ inhibitor monotherapy might limit bleeding risk and retain the ischemic benefits of prolonged DAPT and provide long-term greater ischemic protection than aspirin alone.
- In GLOBAL LEADERS ticagrelor with 1-mo aspirin did not reduce the composite of death or Q-MI as compared to 1-year DAPT followed by aspirin*.


Background ii

- By design, all clinical endpoints in the GLOBAL LEADERS study were investigator reported (IR) without central adjudication.
 - "The FDA considers the adjudication process to be a critically important component of good clinical study practice"*
- The current study was designed to prospectively implement an independent central adjudication process of both reported events and potential unreported event triggers to further assess the impact of this novel experimental treatment in a large stratified sample of patients included in the GLOBAL LEADERS trial.

GLOBAL LEADERS design

ASA 75-100 mg/d

Ticagrelor 90 mg bid

Control arm

Ticagrelor 90 mg bid

ASA 75-100 mg/d

ASA 75-100 mg/d

Stable CAD

Clopidogrel 75 mg/d

0 30 d 90 d 120 d

1 year

1.5 years

2 years

"All-comers"
PCI population
N = 15,991
1:1 Randomisation,
open-label design,

130 centers

worldwide

Any type of lesions: Left main, SVG, CTO bifurcation, ISR, etc.

Unrestricted use of DES (number, length)

Randomization was also stratified by site

GLASSY - OBJECTIVES

To assess the comparative effectiveness of the experimental treatment strategy as compared to conventional 12-month DAPT followed by aspirin on the:

- Primary efficacy EP of CEC-adjudicated all-cause death, non-fatal MI, non-fatal stroke or urgent TVR
 (non-inferiority and if met superiority)
- Primary safety EP of CEC-adjudicated BARC 3 or 5 bleeding (superiority)

GLASSY - STATISTICAL CONSIDERATIONS

Under the assumptions that the co-primary *Efficacy* and *Safety EPs* would occur, respectively at 11% and 5% in the control group, <u>7,186</u> patients would yield:

> 85% power to detect non-inferiority for the co-primary efficacy EP with a NI margin at 1.22 on a relative scale (≈ 2.4% ARD), 1-sided type I error of 2.5%.

80% power to assess the superiority for the co-primary efficacy EP, assuming 20% RRR with two-sided alpha of 2.5%.

> 80% power to detect a 33% RRR in the experimental arm for the co-primary safety endpoint (BARC 3 or 5 bleeding) with two-sided alpha error at 2.5%.

GLASSY - PARTICIPATING SITES AND FUNDS

The study was sponsored by the European Institute of Clinical Research (ECRI), a nonprofit organization, and received grant support from the department of cardiology at Bern university hospital, Bern, Switzerland and from the Swiss National Science Foundation (SNSF) Project number: IZSEZO 180403.

Germany

Bad Nauheim, PI: C. Hamm

Essen, PI: C. Naber

United Kingdom

Blackburn, PI: S. Gard

The Netherlands

Rotterdam, PI: D. Diletti

Amsterdam, PI: T. Slagboom

Belgium

Hasselt, PI: E. Benit

Bonheiden, PI: L. Janssens

Chaleroi, PI: A. Aminian

Genk, PI: M. Vrolix

Switzerland

Bern, PI: S. Windecker

Poland

Chrzabow, PI: A. Zurakowski

Krakov, PI: K. Zmudka

Dabrowa Gornicza, PI: P. Buszan

PAKS Kozle, PI: J. Prokopczuk

Austria

Vienna, PI: K. Huber

Italy

Pavia, PI: M. Ferrario

Ferrara, PI: C. Tumscitz

Terni, PI: M. Dominici

Arezzo, PI: L. Bolognese

Bulgaria

Sofia, PI: I. Petrov

GLASSY - STUDY DESIGN

GLASSY 7,585

Global Leaders Trial 15,991

CRF based screening

Investigator reported events

Event triggers based on prespecified logics

Source documents collection/translation

CEC process

Formal adjudication of IR and triggered EPs

CHAIR:

E. Mc FADDEN

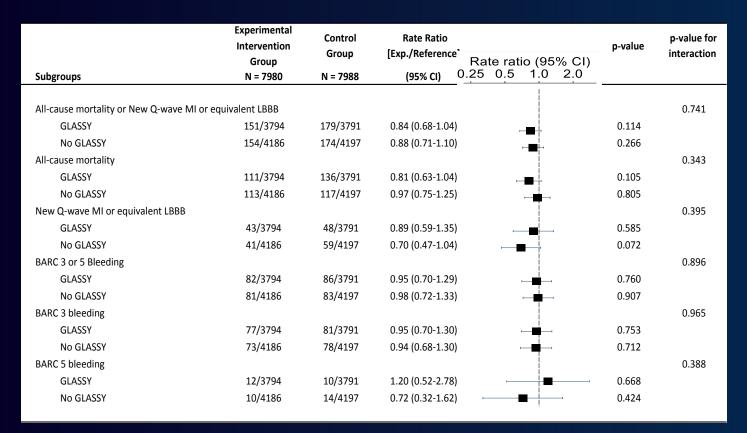
Co-chair:

S. LEONARDI

MEMBER:

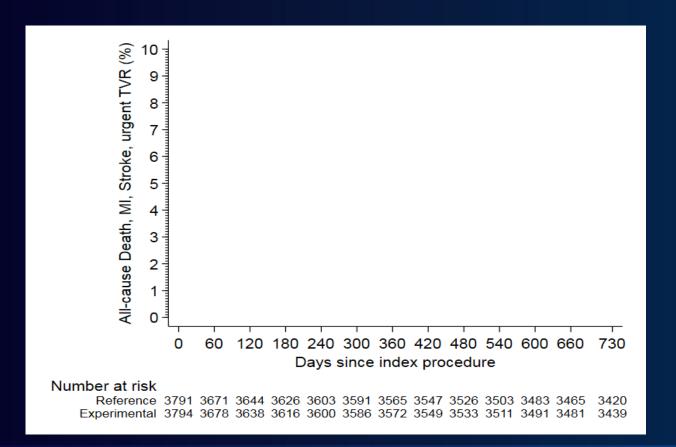
R. PICCOLO

PROJECT LEADER:


A. FRANZONE

GLASSY - PARTICIPANTS VS NON

Glassy	Not Glassy	
(20 sites)	(110 sites)	P-value*
N=7,585	N= 8,383	
64.9±10	64.2±10	0.41
1799 (23.7)	1915 (22.8)	0.33
5492 (73)	6223 (74)	0.70
1822 (24)	2216 (26)	0.47
1005 (13)	1166 (14)	0.83
553 (7)	452 (5)	0.03
2186 (29)	1983 (24)	0.007
1762 (23)	1948 (23)	0.91
2522 (33)	2699 (32)	0.53
443 (6)	500 (6)	0.62
3745 (49)	4736 (56)	0.048
1098 (14)	1248 (15)	0.65
48 (0.6)	50 (0.6)	0.78
6954 (92)	7747 (93)	0.78
469 (84)	465 (83)	0.51
130 (83)	181 (82)	0.88
	(20 sites) N=7,585 64.9±10 1799 (23.7) 5492 (73) 1822 (24) 1005 (13) 553 (7) 2186 (29) 1762 (23) 2522 (33) 443 (6) 3745 (49) 1098 (14) 48 (0.6) 6954 (92) 469 (84)	(20 sites) (110 sites) N=7,585 N= 8,383 64.9±10 64.2±10 1799 (23.7) 1915 (22.8) 5492 (73) 6223 (74) 1822 (24) 2216 (26) 1005 (13) 1166 (14) 553 (7) 452 (5) 2186 (29) 1983 (24) 1762 (23) 1948 (23) 2522 (33) 2699 (32) 443 (6) 500 (6) 3745 (49) 4736 (56) 1098 (14) 1248 (15) 48 (0.6) 50 (0.6) 6954 (92) 7747 (93) 469 (84) 465 (83)

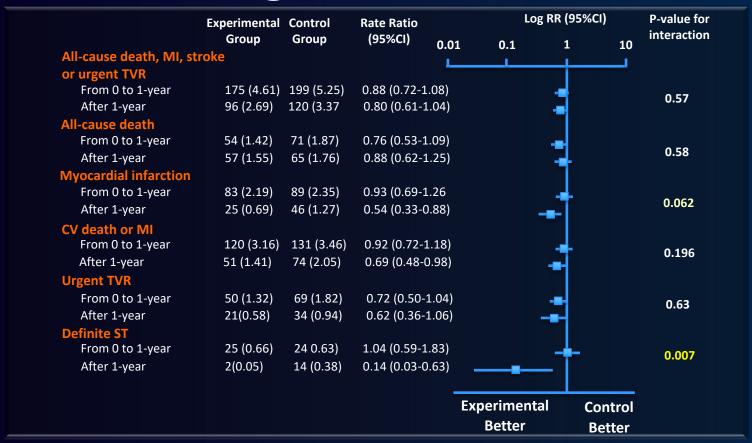

^{*:} Mixed-models p-values, accounting for a random effect of hospital identifier

Clinical outcomes according to GLASSY inclusion

GLASSY - CO-PRIMARY EFFICACY EP

GLASSY

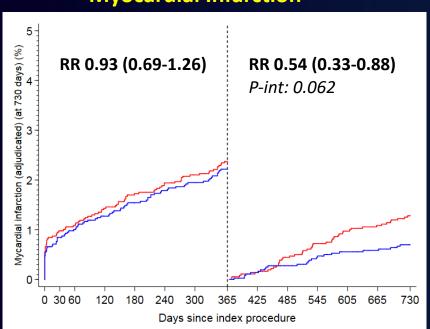
GLAS

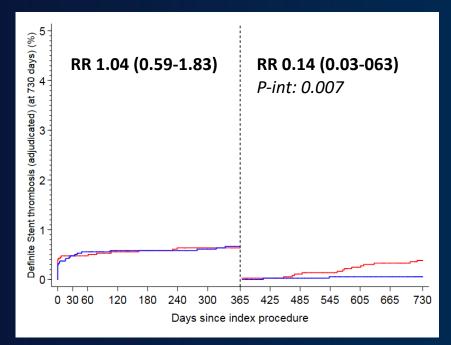

SECONDARY EFFICACY EPS @ 2-YEARS

GLASSY

LANDMARK ANALYSIS @ I-YEAR

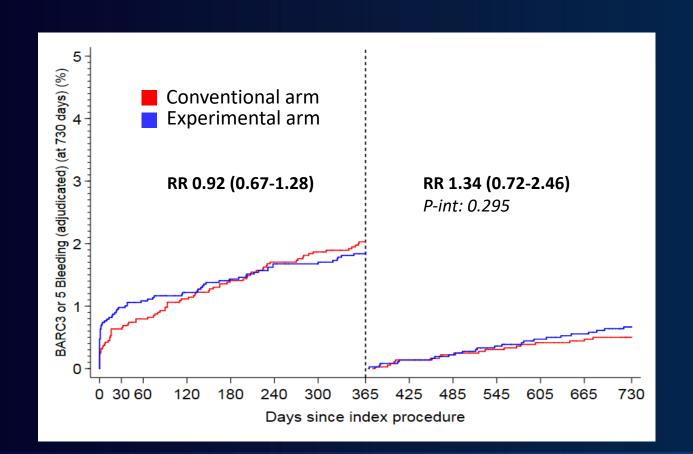
GLASSY


LANDMARK ANALYSIS @ I-YEAR


Experimental arm

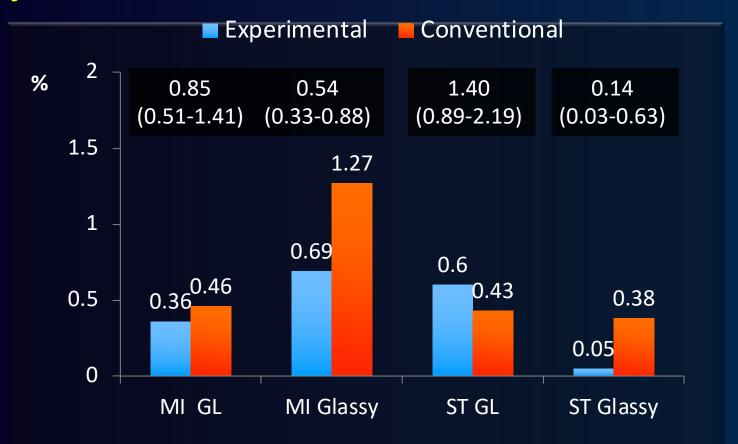
Conventional arm

Myocardial Infarction



Definite Stent thrombosis

GLASSY - CO-PRIMARY SAFETY EP



Summary

- Ticagrelor monotherapy after 1-month DAPT was non-inferior to conventional DAPT in the prevention of all-cause death, non-fatal myocardial infarction, non-fatal stroke, or urgent target-vessel revascularization at 2 years.
- Our results provide new evidence that discontinuation of aspirin after 30 days while continuing ticagrelor alone does not expose patients to a higher ischemic risk as compared to a standard DAPT for 1 year and may reduce the rates of MI and stent thrombosis as compared to aspirin alone.
- Furthermore, the experimental treatment did not increase the risk of major bleeding.

1-year landmark: Global leaders vs GLASSY

